【題目】如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長為 米,AP段圍墻高1米,AQ段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的焦點(diǎn)為F1 , F2 , 離心率為 ,點(diǎn)P為其上動點(diǎn),且三角形PF1F2的面積最大值為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)M,N為C上的兩個動點(diǎn),求常數(shù)m,使 =m時,點(diǎn)O到直線MN的距離為定值,求這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,離心率 ,它的長軸長等于圓x2+y2﹣2x+4y﹣3=0的直徑.
(1)求橢圓 C的方程;
(2)若過點(diǎn) 的直線l交橢圓C于A,B兩點(diǎn),是否存在定點(diǎn)Q,使得以AB為直徑的圓經(jīng)過這個定點(diǎn),若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+ =0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω>0,函數(shù)y=2cos(ωx+ )﹣1的圖象向右平移 個單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體積為 的球有一個內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2::=2sin , C3:=2cos
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com