科目: 來源: 題型:
【題目】已知雙曲線E:﹣=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標原點,動直線l分別交直線l1 , l2于A,B兩點(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,點P(2,0).
(I)求橢圓C的短軸長與離心率;
( II)過(1,0)的直線與橢圓C相交于M、N兩點,設(shè)MN的中點為T,判斷|TP|與|TM|的大小,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點.
(I)求證:PB∥平面FAC;
(II)求三棱錐P-EAD的體積;
(III)求證:平面EAD⊥平面FAC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,半圓O的直徑為2,A為直徑延長線上一點,OA=2,B為半圓上任意一點,以線段AB為腰作等腰直角△ABC(C、O兩點在直線AB的兩側(cè)),當∠AOB變化時,OC≤m恒成立,則m的最小值為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)F為拋物線的焦點,A、B是拋物線C上的兩個動點,O為坐標原點.
(I)若直線AB經(jīng)過焦點F,且斜率為2,求線段AB的長度|AB|;
(II)當OA⊥OB時,求證:直線AB經(jīng)過定點M(4,0).
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的“中值點”,下列函數(shù):
①; ②; ③; ④中,在區(qū)間[O,1]上“中值點”多于一個的函數(shù)序號為( )
A. ①② B. ①③ C. ②③ D. ①④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的離心率為,,為其左、右頂點,為橢圓上除,外任意一點,若記直線,斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長軸長為4,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,求與橢圓相交的弦的中點的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com