【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.

【答案】(1)證明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB平面ABD,AB⊥BD,
∴AB⊥平面BCD,又CD平面BCD,∴AB⊥CD.
(2)解:建立如圖所示的空間直角坐標(biāo)系.
∵AB=BD=CD=1,AB⊥BD,CD⊥BD,
∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M
=(0,1,﹣1),=(1,1,0),=
設(shè)平面BCM的法向量=(x,y,z),則,
令y=﹣1,則x=1,z=1.
=(1,﹣1,1).
設(shè)直線AD與平面MBC所成角為θ.
則sinθ=|cos<,>|===

【解析】(1)利用面面垂直的性質(zhì)定理即可得出;
(2)建立如圖所示的空間直角坐標(biāo)系.設(shè)直線AD與平面MBC所成角為θ,利用線面角的計(jì)算公式sinθ=|cos<,>|=即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=logmm0m≠1),

I)判斷fx)的奇偶性并證明;

II)若m=,判斷fx)在(3,+∞)的單調(diào)性(不用證明);

III)若0m1,是否存在βα>0,使fx)在,β]的值域?yàn)?/span>[logmmβ-1),logmα-1]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實(shí)數(shù),滿足,則都為0”時(shí),“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)都不為0”;

③把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得到的圖象的函數(shù)解析式為

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點(diǎn) 處有一個(gè)水聲監(jiān)測(cè)點(diǎn),另兩個(gè)監(jiān)測(cè)點(diǎn) 分別在 的正東方向 處和 處.某時(shí)刻,監(jiān)測(cè)點(diǎn) 收到發(fā)自目標(biāo) 的一個(gè)聲波, 后監(jiān)測(cè)點(diǎn) 后監(jiān)測(cè)點(diǎn) 相繼收到這一信號(hào),在當(dāng)時(shí)的氣象條件下,聲波在水中的傳播速度是

(1)設(shè) 的距離為 ,用 分別表示 的距離,并求 的值;

(2)求目標(biāo) 的海防警戒線 的距離(精確到 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊長(zhǎng)是三個(gè)連續(xù)的自然數(shù),且最大角是最小角的2倍,則此三角形的面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E:=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1 , l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩陣A的逆矩陣A﹣1=
(1)求矩陣A;
(2)求矩陣A﹣1的特征值以及屬于每個(gè)特征值的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一段時(shí)間內(nèi),分5次測(cè)得某種商品的價(jià)格x(萬(wàn)元)和需求量y(t)之間的一組數(shù)據(jù)為:

1

2

3

4

5

價(jià)格x

1.4

1.6

1.8

2

2.2

需求量y

12

10

7

5

3

已知,

(1)畫出散點(diǎn)圖;

(2)求出y對(duì)x的線性回歸方程;

(3)如價(jià)格定為1.9萬(wàn)元,預(yù)測(cè)需求量大約是多少?(精確到0.01 t).

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(2,2),B(5,3),C(3,-1).

(1)求△ABC的外接圓的方程;

(2)若點(diǎn)M(a,2)在△ABC的外接圓上,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案