相關(guān)習題
 0  258835  258843  258849  258853  258859  258861  258865  258871  258873  258879  258885  258889  258891  258895  258901  258903  258909  258913  258915  258919  258921  258925  258927  258929  258930  258931  258933  258934  258935  258937  258939  258943  258945  258949  258951  258955  258961  258963  258969  258973  258975  258979  258985  258991  258993  258999  259003  259005  259011  259015  259021  259029  266669 

科目: 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數(shù)學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數(shù)段,縱坐標為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數(shù)學成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在等差數(shù)列, , 是它的前項和,.

(1);

(2)這個數(shù)列的前多少項的和最大,并求出這個最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用 分別表示這4個人中去參加甲、乙游戲的人數(shù),記 ,求隨機變量 的分布列與數(shù)學期望

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線 為參數(shù))以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線 的極坐標方程為 .
(1)將曲線 的極坐標方程化為直角坐標方程;
(2)設(shè)點M的直角坐標為 ,直線l與曲線C的交點為A,B,求 的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點P是長軸長為 的橢圓Q: 上異于頂點的一個動點,O為坐標原點,A為橢圓的右頂點,點M為線段PA的中點,且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設(shè)過左焦點F1且不與坐標軸垂直的直線l交橢圓于C,D兩點,線段CD的垂直平分線與x軸交于點G,點G橫坐標的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,在下列命題中,其中正確命題的序號是.
⑴曲線 必存在一條與 軸平行的切線;
⑵函數(shù) 有且僅有一個極大值,沒有極小值;
⑶若方程 有兩個不同的實根,則 的取值范圍是
⑷對任意的 ,不等式 恒成立;
⑸若 ,則 ,可以使不等式 的解集恰為 ;

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

同步練習冊答案