科目: 來(lái)源: 題型:
【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)
患流感 | 未患流感 | |
服用藥 | 2 | 18 |
未服用藥 | 8 | 12 |
根據(jù)表中數(shù)據(jù),通過(guò)計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯(cuò)的概率不超過(guò)( )
A.0.05
B.0.025
C.0.01
D.0.005
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對(duì)a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動(dòng)點(diǎn),定點(diǎn)A( , ),B是曲線ρ=﹣2sinθ上的動(dòng)點(diǎn),求|PA|+|PB|的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的函數(shù)關(guān)系式是
銷售量g(t)與時(shí)間t的函數(shù)關(guān)系式是g(t)=- + (0≤t≤100),求這種商品的日銷售額的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),求證: .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)共有土地50畝,這些地可種西瓜、棉花、玉米.這些農(nóng)作物每畝地所需勞力和預(yù)計(jì)產(chǎn)值如下表.若該農(nóng)場(chǎng)有20名勞動(dòng)力,應(yīng)怎樣計(jì)劃才能使每畝地都能種上作物(玉米必種),所有勞動(dòng)力都被安排工作(每名勞動(dòng)力只能種植一種作物)且作物預(yù)計(jì)總產(chǎn)值達(dá)最高?
作物 | 勞力/畝 | 產(chǎn)值/畝 |
西瓜 | 1/2 | 0.6萬(wàn)元 |
棉花 | 1/3 | 0.5萬(wàn)元 |
玉米 | 1/4 | 0.3萬(wàn)元 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 ,短軸上的兩個(gè)頂點(diǎn)為A,B(A在B的上方),且四邊形AF1BF2的面積為8.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G,求證:A,G,N三點(diǎn)共線.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商場(chǎng)出售兩款型號(hào)不同的手機(jī),由于市場(chǎng)需求發(fā)生變化,第一款手機(jī)連續(xù)兩次提價(jià)10%,第二款手機(jī)連續(xù)兩次降價(jià)10%,結(jié)果都以1210元出售.
(1)求第一款手機(jī)的原價(jià);
(2)若該商場(chǎng)同時(shí)出售兩款手機(jī)各一部,求總售價(jià)與總原價(jià)之間的差額.(結(jié)果精確到整數(shù))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點(diǎn).
(I)求證:EF∥平面PAD;
(II)求證:平面PDC⊥平面PAD.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com