相關(guān)習(xí)題
 0  236086  236094  236100  236104  236110  236112  236116  236122  236124  236130  236136  236140  236142  236146  236152  236154  236160  236164  236166  236170  236172  236176  236178  236180  236181  236182  236184  236185  236186  236188  236190  236194  236196  236200  236202  236206  236212  236214  236220  236224  236226  236230  236236  236242  236244  236250  236254  236256  236262  236266  236272  236280  266669 

科目: 來(lái)源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2},B={x|0≤x≤1},那么A∩B等于( 。
A.{0}B.{1}C.{0,1}D.[0,1]

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點(diǎn),P為橢圓上任意一點(diǎn),△PF1F2的周長(zhǎng)為$4+2\sqrt{3}$,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過(guò)橢圓C的右焦點(diǎn)F2作垂直于x軸的直線,與橢圓相交于M,N兩點(diǎn),與線段AB相交于一點(diǎn)(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時(shí)直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關(guān)系.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x2+alnx-x(a≠0),g(x)=x2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的a∈(1,+∞),總存在x1,x2∈[1,a],使得f(x1)-f(x2)>g(x1)-g(x2)+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.某校開(kāi)設(shè)的校本課程分別有人文科學(xué)、自然科學(xué)、藝術(shù)體育三個(gè)課程類別,每種課程類別開(kāi)設(shè)課程數(shù)及學(xué)分設(shè)定如下表所示:
人文科學(xué)類自然科學(xué)類藝術(shù)體育類
課程門(mén)數(shù)442
每門(mén)課程學(xué)分231
學(xué)校要求學(xué)生在高中三年內(nèi)從中選修3門(mén)課程,假設(shè)學(xué)生選修每門(mén)課程的機(jī)會(huì)均等.
(Ⅰ)甲至少選1門(mén)藝術(shù)體育類課程,同時(shí)乙至多選1門(mén)自然科學(xué)類課程的概率為多少?
(Ⅱ)求甲選的3門(mén)課程正好是7學(xué)分的概率;
(Ⅲ)設(shè)甲所選3門(mén)課程的學(xué)分?jǐn)?shù)為X,寫(xiě)出X的分布列,并求出X的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,2an•an+1=tSn-2,其中t為常數(shù).
(Ⅰ)設(shè)bn=an+1+an,求證:{bn}為等差數(shù)列;
(Ⅱ)若t=4,求Sn

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn).
(Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:面DBG⊥面BDF.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.定義在R上的函數(shù)f(x)滿足2f(4-x)=f(x)+x2-2,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程是4x+3y-14=0.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.不等式|2x-1|+|2x+9|>10的解集為$\{x|x<-\frac{9}{2}或x>\frac{1}{2}\}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.已知$n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx$,那么${(\sqrt{x}-\frac{5}{x})^n}$的展開(kāi)式中含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù)為-30.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動(dòng),則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案