相關(guān)習(xí)題
 0  235530  235538  235544  235548  235554  235556  235560  235566  235568  235574  235580  235584  235586  235590  235596  235598  235604  235608  235610  235614  235616  235620  235622  235624  235625  235626  235628  235629  235630  235632  235634  235638  235640  235644  235646  235650  235656  235658  235664  235668  235670  235674  235680  235686  235688  235694  235698  235700  235706  235710  235716  235724  266669 

科目: 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F在x軸上,上頂點(diǎn)到右頂點(diǎn)的距離為$\sqrt{7}$,且短軸長(zhǎng)是焦距的$\sqrt{3}$倍.
(1)求橢圓C的方程;
(2)設(shè)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過橢圓C的右焦點(diǎn)作直線l∥AB并交橢圓C于M、N兩點(diǎn),是否存在常數(shù)λ,使得|AB|2=λ|MN|?若存在,請(qǐng)求出λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.夏威夷木瓜是木瓜類的名優(yōu)品種,肉紅微味甜深受市民喜愛.某果農(nóng)選取一片山地種植夏威夷木瓜,收獲時(shí),該果農(nóng)隨機(jī)選取果樹20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的$\frac{4}{3}$倍.
(1)求a,b的值;
(2)若從產(chǎn)量在區(qū)間(50,60]上的果樹隨機(jī)抽取2株果樹,求它們的產(chǎn)量分別落在(50,55]和(55,60]兩個(gè)不同區(qū)間的概率的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2$\sqrt{3}$.
(1)求證:AB1⊥CC1
(2)若AB1=3$\sqrt{2}$,A1C1的中點(diǎn)為D1,求二面角C-AB1-D1的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.某連續(xù)經(jīng)營(yíng)公司的5個(gè)零售店某月的銷售額和利潤(rùn)資料如表:
商店名稱A B C D E 
 銷售額(x)/千萬元 3 5 6 7 9
 利潤(rùn)(y)/百萬元 2 3 3 4 5
(1)若銷售額和利潤(rùn)額具有線性相關(guān)關(guān)系,用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程;
(2)若該連鎖經(jīng)營(yíng)公司旗下的某商店F次月的銷售額為1億3千萬元,試用(1)中求得的回歸方程,估測(cè)其利潤(rùn).(精確到百萬元) 
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)x,則事件“7x-3≥0”發(fā)生的概率為$\frac{4}{7}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知O為原點(diǎn),過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的點(diǎn)P作兩條漸近線的平行線,且與兩漸近線的交點(diǎn)分別為A,B,平行四邊形OBPA的面積為2,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目: 來源: 題型:選擇題

7.下列命題中,是真命題的是( 。
A.?x∈R,sinx+cosx>$\sqrt{2}$B.若0<ab<1,則b<$\frac{1}{a}$
C.若x2=|x|,則x=±1D.若m2+$\sqrt{n}$=0,則m=n=0

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知m>0,n>0,空間向量$\overrightarrow{a}$=(m,4,-3)與$\overrightarrow$=(1,n,2)垂直,則mn的最大值為( 。
A.$\frac{3}{2}$B.3C.9、D.$\frac{9}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知拋物線y2=2px(p>0)經(jīng)過點(diǎn)A(1,$\frac{1}{2}$),則它的準(zhǔn)線方程為(  )
A.x=-$\frac{1}{32}$B.x=-$\frac{1}{16}$C.y=-$\frac{1}{32}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-(a+4)x+a.
(1)求實(shí)數(shù)a的值及f(x)的解析式;
(2)求使得f(x)=x+6成立的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案