13.在平面直角坐標系xOy中,橢圓C的中心為原點,焦點F在x軸上,上頂點到右頂點的距離為$\sqrt{7}$,且短軸長是焦距的$\sqrt{3}$倍.
(1)求橢圓C的方程;
(2)設(shè)過原點的直線與橢圓C交于A,B兩點,過橢圓C的右焦點作直線l∥AB并交橢圓C于M、N兩點,是否存在常數(shù)λ,使得|AB|2=λ|MN|?若存在,請求出λ;若不存在,請說明理由.

分析 (1)設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),運用離心率公式和內(nèi)切圓的性質(zhì)以及三角形的面積公式,計算即可得到a,b,c,進而得到橢圓方程;
(2)設(shè)出直線l的方程為x=my+1,代入橢圓方程,運用韋達定理和弦長公式,再設(shè)直線x=my,代入橢圓方程,運用弦長公式,化簡可得|AB|,再由計算即可得到所求常數(shù)λ.

解答 解:(1)設(shè)橢圓的方程為 $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由題意可得2b=2$\sqrt{3}$c,$\sqrt{{a}^{2}+^{2}}=\sqrt{7}$,a2-b2=c2,
解得a=2,b=$\sqrt{3}$,c=1,
即有橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設(shè)l的方程為x=my+1,M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}x=my+1\\ \frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1\end{array}\right.$得(3m2+4)y2+6my-9=0,
即有y1+y2=-$\frac{6m}{4+3{m}^{2}}$,y1y2=-$\frac{9}{4+3{m}^{2}}$,
|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\sqrt{(\frac{6m}{4+3{m}^{2}})^{2}+\frac{36}{4+3{m}^{2}}}$=$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$,
設(shè)A(x3,y3),B(x4,y4),
由x=my代入橢圓方程可得
消去x,并整理得y2=$\frac{12}{4+3{m}^{2}}$,
|AB|=$\sqrt{1+{m}^{2}}$•|y3-y4|=$\sqrt{1+{m}^{2}}$•$\frac{4\sqrt{3}}{\sqrt{4+3{m}^{2}}}$,
即有$\frac{|AB{|}^{2}}{\left|MN\right|}$=$\frac{48(1+{m}^{2})}{4+3{m}^{2}}$•$\frac{4+3{m}^{2}}{12(1+{m}^{2})}$=4.
故存在常數(shù)λ=4,使得|AB|2=4|MN|.

點評 本題考查橢圓的方程的求法,注意運用橢圓的離心率公式和內(nèi)切圓的性質(zhì),考查弦長的求法,注意運用直線方程和橢圓方程聯(lián)立,運用韋達定理和弦長公式,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.給定函數(shù):①$y=\sqrt{x}$,②$y={log}_{\frac{1}{2}}(x+1)$,③y=|x2-2x|,④y=x+$\frac{1}{x}$,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是(  )
A.②④B.②③C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知不等式|x+3|-2x-1<0的解集為(x0,+∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x-m|+|x+$\frac{1}{m}$|-x0(m>0)有零點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知無窮數(shù)列{cn}滿足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,寫出數(shù)列{cn}的前4項;
(Ⅱ)對于任意0<c1≤1,是否存在實數(shù)M,使數(shù)列{cn}中的所有項均不大于M?若存在,求M的最小值;若不存在,請說明理由;
(Ⅲ)當c1為有理數(shù),且c1≥0時,若數(shù)列{cn}自某項后是周期數(shù)列,寫出c1的最大值.(直接寫出結(jié)果,無需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知O為原點,過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的點P作兩條漸近線的平行線,且與兩漸近線的交點分別為A,B,平行四邊形OBPA的面積為2,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.“-2<m<-$\frac{1}{3}$”是“方程$\frac{{x}^{2}}{m+3}$+$\frac{{y}^{2}}{2m+1}$表示雙曲線,且方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{2m-1}$表示交點在y軸上的橢圓”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一次函數(shù)y=-$\frac{m}{n}$x+$\frac{1}{n}$的圖象同時經(jīng)過第一、二、四象限的必要不充分條件是( 。
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖所示,已知A,B是單位圓上兩點且|AB|=$\sqrt{3}$,設(shè)AB與x軸正半軸交于點C,α=∠AOC,β=∠OCB,則sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

同步練習冊答案