相關(guān)習題
 0  234316  234324  234330  234334  234340  234342  234346  234352  234354  234360  234366  234370  234372  234376  234382  234384  234390  234394  234396  234400  234402  234406  234408  234410  234411  234412  234414  234415  234416  234418  234420  234424  234426  234430  234432  234436  234442  234444  234450  234454  234456  234460  234466  234472  234474  234480  234484  234486  234492  234496  234502  234510  266669 

科目: 來源: 題型:選擇題

7.圓(x-2)2+y2=4的圓心坐標和半徑分別為( 。
A.(0,2),2B.(2,0),2C.(-2,0),4D.(2,0),4

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$.以原點為圓心,橢圓的短軸長為直徑的圓與直線x-y+$\sqrt{2}$=0相切.
(1)求橢圓C的方程;
(2)如圖,若斜率為k(k≠0)的直線l與x軸、橢圓C順次相交于A,M,N(A點在橢圓右頂點的右側(cè)),且∠NF2F1=∠MF2A.求證直線l恒過定點,并求出斜率k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓上一點A(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運用該性質(zhì)解決以下問題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過點$(1,\frac{{\sqrt{2}}}{2})$.點B為橢圓C1在第一象限中的任意一點,過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點,則△OCD面積的最小值為$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.下列選項中敘述錯誤的是( 。
A.若“p∧q”為假命題,則“p∨q”為真命題
B.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
C.命題“若x=0,則x2-x=0”的逆否命題為真命題
D.若命題p:?n∈N,n2>2n,則?p:?n∈N,n2≤2n

查看答案和解析>>

科目: 來源: 題型:選擇題

3.“x=1”是“x2-2x+1=0”的 ( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

2.按下圖所示的程序框圖運算,若輸入x=8,則輸出k=4.

查看答案和解析>>

科目: 來源: 題型:填空題

1.某地為了了解地區(qū)100000戶家庭的用電情況,采用分層抽樣的方法抽取了500戶家庭的月均用電量,并根據(jù)這500戶家庭的月均用電量畫出頻率分布直方圖(如圖),則該地區(qū)100000戶家庭中月均用電度數(shù)在[70,80]的家庭大約有12000戶.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,則-(cosα+sinα)等于( 。
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.如圖,已知正方形的面積為100,向正方形內(nèi)隨機地撒200顆黃豆,數(shù)得落在陰影外的黃豆數(shù)為114顆,以此實驗數(shù)據(jù)為依據(jù),可以估計出陰影部分的面積約為( 。
A.53B.43C.47D.57

查看答案和解析>>

科目: 來源: 題型:選擇題

18.計算$({\frac{1}{2}-\frac{{\sqrt{3}}}{2}i}){({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^2}$=(  )
A.$\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$B.$\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$

查看答案和解析>>

同步練習冊答案