科目: 來源: 題型:
已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:
a1=a,an=f(aa-1)(n=2,3,4,…),a2≠a1,f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…),其中a為常數(shù),k為非零常
數(shù).
(Ⅰ)令bn=aa+1-an(n∈N*),證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)當(dāng)|k|<1時,求
查看答案和解析>>
科目: 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=a[2-()n-1]-b[2-(n+1)()n-1](n=1,2,…),其中a,b是非零常數(shù),則存在數(shù)列{xn}、{yn}使得( )
A.an=xn+yn,其中{xn}為等差數(shù)列,{yn}為等比數(shù)列
B.a(chǎn)n=xn+yn,其中{xn}和{yn}都為等差數(shù)列
C.a(chǎn)n=xn·yn,其中{xn}為等差數(shù)列,{yn}為等比數(shù)列
D.a(chǎn)n=xn·yn,其中{xn}和{yn}都為等比數(shù)列
查看答案和解析>>
科目: 來源: 題型:
數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,aa+1=(n=1,2,3…).證明:
(Ⅰ)數(shù)列{}是等比數(shù)列;
(Ⅱ)Sn+1=4an.
查看答案和解析>>
科目: 來源: 題型:
若{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>0,a2003·a2004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是 ( )
A.4005 B.4006 C.4007 D.4008
查看答案和解析>>
科目: 來源: 題型:
假設(shè)某市:2004年新建住房400萬平方米,其中有250萬平方米是中低價房.預(yù)計(jì)在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價房的面積均比上一年增加50萬平方米.那么,到哪一年底,
(1)該市歷年所建中低價房的累計(jì)面積(以2004年為累計(jì)的第一年)將首次不少于4750萬平方米?
(2)當(dāng)年建造的中低價房的面積占該年建造住房面積的比例首次大于85%?
(3)設(shè)幾年后新建住房面積S為:400(1+8%)n. 85%<25n2+225n.
查看答案和解析>>
科目: 來源: 題型:
已知函數(shù)f(x)=設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用數(shù)學(xué)歸納法證明bn≤;
(Ⅱ)證明Sn<.
查看答案和解析>>
科目: 來源: 題型:
如圖,直線l1:y=kx+1-k(k≠0,k≠)與l2相交于點(diǎn)P.直線l1與x軸交于點(diǎn)P1,過點(diǎn)P1作x軸的垂線交于直線l2于點(diǎn)Q1,過點(diǎn)Q1作y軸的垂線交直線l1于點(diǎn)P2,過點(diǎn)P2作x軸的垂線交直線l2于點(diǎn)Q2,…這樣一直作下去,可得到一系列點(diǎn)P1,Q1,P2,Q2,…點(diǎn)Pn(n=1,2,…)的橫坐標(biāo)構(gòu)成數(shù)列{xn}.
(Ⅰ)證明xn+1-1=(xn-1),(n∈N*);
(Ⅱ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)比較2|PPn|2與4k2|PP1|2+5的大小.
查看答案和解析>>
科目: 來源: 題型:
在等差數(shù)列{an}中,公差d≠0,a2是a1與a4的等比中項(xiàng).已知數(shù)列a1,a3,,…,akn,…成等比數(shù)列,求數(shù)列{kn}的通項(xiàng)kn.
查看答案和解析>>
科目: 來源: 題型:
如圖,△OBC的三個頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對于每一個正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)證明yn+4=1-,n∈N*,
(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
已知數(shù)列{an}是首項(xiàng)為a且公比q不等于1的等比數(shù)列,Sn是其前n項(xiàng)和,a1,2a7,3a4成等差數(shù)列.
(Ⅰ) 證明12S3,S6,S12-S6成等比數(shù)列;
(Ⅱ)求和Tn=a1+2a4+3a7+…+na3n-2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com