相關(guān)習(xí)題
 0  212720  212728  212734  212738  212744  212746  212750  212756  212758  212764  212770  212774  212776  212780  212786  212788  212794  212798  212800  212804  212806  212810  212812  212814  212815  212816  212818  212819  212820  212822  212824  212828  212830  212834  212836  212840  212846  212848  212854  212858  212860  212864  212870  212876  212878  212884  212888  212890  212896  212900  212906  212914  266669 

科目: 來源: 題型:

某商場為了了解顧客的購物信息,隨機(jī)的在商場收集了100位顧客購物的相關(guān)數(shù)據(jù),整理如下:
一次購物款(單位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顧客人數(shù)m2030n10
統(tǒng)計結(jié)果顯示:100位顧客中購物款不低于100元的顧客占60%.據(jù)統(tǒng)計該商場每日大約有5000名顧客,為了增加商場銷售額度,對一次性購物不低于100元的顧客發(fā)放紀(jì)念品(每人一件).(注:視頻率為概率)
(Ⅰ)試確定m,n的值,并估計該商場每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有4人去該商場購物,求獲得紀(jì)念品的人數(shù)ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的頂點(diǎn)為A(0,5),離心率為
3
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線y=-4交橢圓E于點(diǎn)B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),點(diǎn)D在橢圓上,且滿足
BD
=m
BA
+n
BC
(m,n為實數(shù)),求m+n的最大值以及對應(yīng)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=sinx.
(Ⅰ)令f1(x)=f(x),fn+1(x)=
f
n
(x),(n∈N*)
,求f2014(x)的解析式; 
(Ⅱ)若f(x)+1≥ax+cosx在[0,π]上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)證明:f(
π
2n+1
)+f(
2n+1
)+…+f(
(n+1)π
2n+1
)≥
3
2
(n+1)
4(2n+1)

查看答案和解析>>

科目: 來源: 題型:

已知命題“若點(diǎn)M(x0,y0)是圓x2+y2=r2上一點(diǎn),則過點(diǎn)M的圓的切線方程為x0x+y0y=r2”.
(Ⅰ)根據(jù)上述命題類比:“若點(diǎn)M(x0,y0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),則過點(diǎn)M的切線方程為
 
”(寫出直線的方程,不必證明).
(Ⅱ)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且經(jīng)過點(diǎn)(1,
3
2
).
(i)求橢圓C的方程;
(ii)過F1的直線l交橢圓C于A、B兩點(diǎn),過點(diǎn)A、B分別作橢圓的兩條切線,求其交點(diǎn)的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知F1,F(xiàn)2分別是橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),橢圓G與拋物線y2=-4x有一個公共的焦點(diǎn),且過點(diǎn)(-
6
2
,1
).
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓G在第一象限上的任一點(diǎn),連接PF1,PF2,過P點(diǎn)作斜率為k的直線l,使得l與橢圓G有且只有一個公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,試證明
1
kk1
+
1
kk2
為定值,并求出這個定值;
(Ⅲ)在第(Ⅱ)問的條件下,作F2Q⊥F2P,設(shè)F2Q交l于點(diǎn)Q,證明:當(dāng)點(diǎn)P在橢圓上移動時,點(diǎn)Q在某定直線上.

查看答案和解析>>

科目: 來源: 題型:

設(shè)定圓M:(x+
3
)2+y2
=16,動圓N過點(diǎn)F(
3
,0)
且與圓M相切,記動圓N圓心N的軌跡為C.
(1)求軌跡C的方程;
(2)已知A(-2,0),過定點(diǎn)B(1,0)的動直線l交軌跡C于P、Q兩點(diǎn),△APQ的外心為N.若直線l的斜率為k1,直線ON的斜率為k2,求證:k1•k2為定值.

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)A,B,C是拋物線L:y2=2px(p>0)上的不同的三點(diǎn),O為坐標(biāo)原點(diǎn),直線OA∥BC,且拋物線L的準(zhǔn)線方程為x=-1.
(1)求拋物線L的方程;
(2)若△ABC的重心在直線x=-1上,求△ABC的面積取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)A為拋物線上的一點(diǎn),其縱坐標(biāo)為1,|AF|=
5
4

(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)B,C為拋物線上不同于A的兩點(diǎn),且AB⊥AC,過B,C兩點(diǎn)分別作拋物線的切線,記兩切線的交點(diǎn)為D,求|OD|的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知動圓C過定點(diǎn)M(0,2),且在x軸上截得弦長為4.設(shè)該動圓圓心的軌跡為曲線C.
(Ⅰ)求曲線C方程;
(Ⅱ)點(diǎn)A為直線l:x-y-2=0上任意一點(diǎn),過A作曲線C的切線,切點(diǎn)分別為P、Q,△APQ面積的最小值及此時點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
4
=1(a>0)的中心為原點(diǎn)O,左,右焦點(diǎn)分別為F1,F(xiàn)2,離心率為
3
5
5
,點(diǎn)P是直線x=
a2
3
上任意一點(diǎn),點(diǎn)Q在雙曲線E上,且滿足
PF2
QF2
=0.
(1)求實數(shù)a的值;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)若點(diǎn)P的縱坐標(biāo)為1,過點(diǎn)P作動直線l與雙曲線右支交于不同兩點(diǎn)M,N,在線段MN上取異于點(diǎn)M,N的點(diǎn)H,滿足
|PM|
|PN|
=
|MH|
|HN|
,證明點(diǎn)H恒在一條定直線上.

查看答案和解析>>

同步練習(xí)冊答案