相關(guān)習(xí)題
 0  210879  210887  210893  210897  210903  210905  210909  210915  210917  210923  210929  210933  210935  210939  210945  210947  210953  210957  210959  210963  210965  210969  210971  210973  210974  210975  210977  210978  210979  210981  210983  210987  210989  210993  210995  210999  211005  211007  211013  211017  211019  211023  211029  211035  211037  211043  211047  211049  211055  211059  211065  211073  266669 

科目: 來(lái)源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),求證:
(1)PC∥平面EBD;
(2)BC⊥PC.

查看答案和解析>>

科目: 來(lái)源: 題型:

若點(diǎn)A(a,b)(其中a≠b)在矩陣M=
cos α-sin α
sin αcos α
 對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-b,a),
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=
0
1
2
10
所對(duì)應(yīng)變換的作用下得到的新的曲線C′的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

在如圖所示的幾何體中,△ABC是邊長(zhǎng)為2的正三角形,△BCD為等腰直角三角形,且BD=CD,AE=2,AE⊥平面ABC,平面BCD⊥平面ABC.
(Ⅰ)求證:AC∥平面BDE;
(Ⅱ)求鈍二面角C-DE-B的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0),右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(1,
1
2
).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓相交弦BC的中點(diǎn)為A,求直線l的方程;
(3)求△FBC的面積S△FBC

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)f(x)滿足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤
π
2
).
(1)求f(x)的解析式;
(2)求f(x)的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x+
2
x-1 
-1
(1)記g(x)=f(x+1),試證明:g(x)圖象關(guān)于原點(diǎn)對(duì)稱.
(2)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

-
π
2
<x<0,sinx+cosx=
1
5
,
(1)求sinxcosx的值;
(2)求sinx-cosx的值;
(3)求tanx的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N,都有Sn=(m+1)-man(m為常數(shù),且m>0).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比q與m函數(shù)關(guān)系為q=f(m),數(shù)列{bn}滿足b1=2a1,點(diǎn)(bn-1,bn)落在q=f(m)上(n≥2,n∈N,求數(shù)列{bn}的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn,使Tn≤n•2n+2+λ恒成立時(shí),求λ的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,已知在四棱錐S-ABCD中,底面四邊形ABCD是直角梯形,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=2.
(Ⅰ)求證:平面SAB⊥平面SBC;
(Ⅱ)求直線SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目: 來(lái)源: 題型:

選修4-2 矩陣與變換
已知矩陣M=
a1
c0
的一個(gè)特征根為-1,屬于它的一個(gè)特征向量
1
-3

(1)求矩陣M;
(2)求曲線x2+y2=1經(jīng)過(guò)矩陣M所對(duì)應(yīng)的變換得到曲線C,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案