相關(guān)習(xí)題
 0  207209  207217  207223  207227  207233  207235  207239  207245  207247  207253  207259  207263  207265  207269  207275  207277  207283  207287  207289  207293  207295  207299  207301  207303  207304  207305  207307  207308  207309  207311  207313  207317  207319  207323  207325  207329  207335  207337  207343  207347  207349  207353  207359  207365  207367  207373  207377  207379  207385  207389  207395  207403  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=2•3ax-4x
(1)求函數(shù)g(x)的解析式;     
(2)求函數(shù)g(x)在x∈[-1,1]上的值域.

查看答案和解析>>

科目: 來源: 題型:

已知圓C:x2+y2=16,直線l:3x+4y=25.
(1)求圓C的圓心到直線l的距離;
(2)求圓C上任意一點(diǎn)A到直線l的距離小于3的概率.

查看答案和解析>>

科目: 來源: 題型:

已知定義域R的函數(shù)f(x)為偶函數(shù),且f(x+2)=f(x)對任意實(shí)數(shù)x恒成立,當(dāng)0≤x≤1時,f(x)=x.
(1)求當(dāng)-1≤x<0時,f(x)的解析式;
(2)求當(dāng)x∈[2k-1,2k+1),(k∈Z)時,函數(shù)f(x)的解析式;
(3)求方程f(x)=
1
2
在區(qū)間[-1,2013]內(nèi)的所有解的集合.

查看答案和解析>>

科目: 來源: 題型:

(1)已知sinα=
4
5
,求sin(α-2π)sin(π+α);
(2)計(jì)算:sin420°cos750°+sin(-330°)cos(-660°).

查看答案和解析>>

科目: 來源: 題型:

已知a∈R,設(shè)P:函數(shù)y=ax在R上遞增,Q:關(guān)于x的不等式ax2-ax+1>0對?x∈R恒成立.如果P且Q為假,P或Q為真,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(x2-4)(x-
1
2
).
(1)求f′(x);
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在△ABC中,∠BAC=90°,AD是BC邊上的高,E是BC邊上的一個動點(diǎn)(不與B,C重合),EF⊥AB,EG⊥AC,垂足分別為
F,G.
(1)求證
EG
AD
=
CG
CD

(2)FD與DG是否垂直?若垂直,請給出證明;若不垂直,請說明理由;
(3)當(dāng)AB=AC時,△FDG為等腰直角三角形嗎?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

某校為了解學(xué)生的體重發(fā)育情況,現(xiàn)從600名高一男生體檢評價報告單中隨機(jī)抽出50名學(xué)生的體重(單位:kg)數(shù)據(jù)進(jìn)行整理后分成五組,得到頻率分布表如下:
分組頻數(shù)頻率
39.5-49.560.12
49.5-59.5a0.12
59.5-69.518c
69.5-79.5bd
79.5-89.520.04
合計(jì)50e
(Ⅰ)若抽樣中采用了系統(tǒng)抽樣的方法,且將這600名男生隨機(jī)地編號為000,001,002,…,599,試寫出第二組第一位學(xué)生的編號;
(Ⅱ)求出a,b,c,d的值(直接寫出結(jié)果),并補(bǔ)全上面的頻率分布直方圖;
(Ⅲ)若規(guī)定,男生的體重結(jié)果分為偏瘦、偏胖和正常三個類型,超過69.5屬于偏胖,低于49.5屬于偏瘦,問這600名男生中體重正常的人數(shù)約為多少?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=xa-
6
x
,且f(6)=5.
(1)求a的值;
(2)證明f(x)的奇偶性;
(3)判斷f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是D的中點(diǎn).證明:CD⊥平面PAE.

查看答案和解析>>

同步練習(xí)冊答案