科目: 來源: 題型:填空題
給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;
②“若a、b、c、d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b=c+d⇒a=c,b=d”;
③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比結(jié)論正確的命題序號為________(把你認(rèn)為正確的命題序號都填上).
查看答案和解析>>
科目: 來源: 題型:填空題
觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此規(guī)律,第五個等式應(yīng)為______ __;
查看答案和解析>>
科目: 來源: 題型:填空題
過點(diǎn)作曲線:的切線,切點(diǎn)為,設(shè)在軸上的投影是點(diǎn),過點(diǎn)再作曲線的切線,切點(diǎn)為,設(shè)在軸上的投影是點(diǎn),…,依次下去,得到第個切點(diǎn).則點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目: 來源: 題型:填空題
科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個數(shù)列:6,3,10,5,16,8,4,2,1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為 .
(2)如果對正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個數(shù)為 .
查看答案和解析>>
科目: 來源: 題型:填空題
“公差為的等差數(shù)列的前項(xiàng)和為,則數(shù)列是公差為的等差數(shù)列”.類比上述性質(zhì)有:“公比為的正項(xiàng)等比數(shù)列的前項(xiàng)積為,則數(shù)列____________”.
查看答案和解析>>
科目: 來源: 題型:填空題
已知邊長分別為a、b、c的三角形ABC面積為S,內(nèi)切圓O半徑為r,連接OA、OB、OC,則三角形OAB、OBC、OAC的面積分別為cr、ar、br,由S=cr+ar+br得r=,類比得若四面體的體積為V,四個面的面積分別為A、B、C、D,則內(nèi)切球的半徑R=_____________.
查看答案和解析>>
科目: 來源: 題型:填空題
現(xiàn)有一個關(guān)于平面圖形的命題:如圖所示,同一個平面內(nèi)有兩個變長都是a的正方形,其中一個正方形的某起點(diǎn)在另一個正方形的中心,則這兩個正方形重疊部分的面積恒為,類比到空間,有兩個棱長為a的正方體,其中某一個正方體的某頂點(diǎn)在另一個正方體的中心,則這兩個正方體的重疊部分的體積恒為___
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com