科目: 來源: 題型:解答題
已知圓,直線與圓相切,且交橢圓于兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知為橢圓,的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設 .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知為橢圓的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設 .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線與的斜率之積為,證明:存在定點使
得為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.
查看答案和解析>>
科目: 來源: 題型:解答題
已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線與的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,點在軸的射影為,連接 并延長交橢圓于
點,求證:以為直徑的圓經(jīng)過點.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.
(1)求橢圓和圓的標準方程;
(2)設直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量+與共線?如果存在,求k的值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).
(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q的軌跡C2的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點A在橢圓C上,·=0,3||·||=-5·,||=2,過點F2且與坐標軸不垂直的直線交橢圓于P,Q兩點.
(1)求橢圓C的方程;
(2)線段OF2(O為坐標原點)上是否存在點M(m,0),使得·=·?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com