如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.

(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(1)=1   (x-1)2+y2=1
(2) 存在點(diǎn)P,使得△FPM為等腰三角形

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P,離心率是.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E (-1,0)且與橢圓C交于AB兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線Cy2=2px(p>0)的焦點(diǎn)為F,拋物線C與直線l1y=-x的一個交點(diǎn)的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點(diǎn)的直線l2l1垂直,且與拋物線交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過的直線交橢圓于兩點(diǎn), 的周長為8,且面積最大時,為正三角形.

(1)求橢圓的方程;
(2)設(shè)動直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點(diǎn),c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動點(diǎn),直線與直線分別交于M,N兩點(diǎn),求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓M=1(a>)的右焦點(diǎn)為F1,直線lxx軸交于點(diǎn)A,若=2 (其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓Nx2+(y-2)2=1的任意一條直徑(EF為直徑的兩個端點(diǎn)),求·的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)P(0,-1)是橢圓C1=1(a>b>0)的一個頂點(diǎn),C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為雙曲線的一個焦點(diǎn),且兩條曲線都經(jīng)過點(diǎn).

(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案