在平面直角坐標系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

(1)  (2)不存在,理由見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓M=1(ab>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形的周長為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于A,B兩點,若以AB為直徑的圓經(jīng)過橢圓的右頂點C,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過橢圓Γ=1(ab>0)右焦點F2的直線交橢圓于AB兩點,F1為其左焦點,已知△AF1B的周長為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個交點PQ,且?若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的右焦點為,直線軸交于點,若(其中為坐標原點).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點,為圓的任意一條直徑(為直徑的兩個端點),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的頂點在原點,準線方程為x=-.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓,的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,中心在原點O,焦點在x軸上的橢圓C上的點(2,1)到兩焦點的距離之和為4.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l與橢圓C分別交于AB兩點,其中點Ax軸下方,且=3.求過O,A,B三點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,斜率為1的直線與橢圓C交于不同兩點M,N.
(1)求橢圓C的方程;
(2)設(shè)直線過點F(1,0),求線段的長;
(3)若直線過點(m,0),且以為直徑的圓恰過原點,求直線的方程.

查看答案和解析>>

同步練習冊答案