科目: 來源: 題型:解答題
有兩個投資項目、,根據(jù)市場調(diào)查與預(yù)測,A項目的利潤與投資成正比,其關(guān)系如圖甲,B項目的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤與投資單位:萬元)
(1)分別將A、B兩個投資項目的利潤表示為投資x(萬元)的函數(shù)關(guān)系式;
(2)現(xiàn)將萬元投資A項目, 10-x萬元投資B項目.h(x)表示投資A項目所得利潤與投資B項目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目: 來源: 題型:解答題
定義在R上的奇函數(shù)有最小正周期4,且時,。
(1)求在上的解析式;
(2)判斷在上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時,關(guān)于方程在上有實數(shù)解?
查看答案和解析>>
科目: 來源: 題型:解答題
我省某景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對某一景點進(jìn)行改造升級,從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值萬元與投入萬元之間滿足:
為常數(shù)。當(dāng)萬元時,萬元;
當(dāng)萬元時,萬元。 (參考數(shù)據(jù):)
(1)求的解析式;
(2)求該景點改造升級后旅游利潤的最大值。(利潤=旅游增加值-投入)。
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)的定義域和值域均為,求實數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對任意的,總有,求實數(shù)的取值范圍;
查看答案和解析>>
科目: 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目: 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目: 來源: 題型:解答題
某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標(biāo)價為元,購買該商品得到的實際折扣率為.
(Ⅰ)寫出當(dāng)時,關(guān)于的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(Ⅱ)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于?
查看答案和解析>>
科目: 來源: 題型:解答題
已知二次函數(shù)與兩坐標(biāo)軸分別交于不同的三點A、B、C.
(1)求實數(shù)t的取值范圍;
(2)當(dāng)時,求經(jīng)過A、B、C三點的圓F的方程;
(3)過原點作兩條相互垂直的直線分別交圓F于M、N、P、Q四點,求四邊形的面積的最大值。
查看答案和解析>>
科目: 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com