科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:044
(文)已知函數(shù)f(x)=ax3+bx2-x(x∈R,ab是常數(shù)),且當(dāng)x=1和x=2時(shí),函數(shù)f(x)取得極值
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=-3x-m(-2≤x≤0)有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:044
(理)已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:044
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(Ⅰ)求異面直線AE與A1C所成的角;
(Ⅱ)若G為C1C上一點(diǎn),且EG⊥A1C,求二面角A1-AG-E的大。
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:044
某車間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天、第二天分別生產(chǎn)出了1件、2件次品.而質(zhì)檢部門每天要從生產(chǎn)的10件產(chǎn)品中隨意抽取4件進(jìn)行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過.
(Ⅰ)求第一天產(chǎn)品通過檢查的概率;
(Ⅱ)(理)若廠內(nèi)對(duì)車間生產(chǎn)的產(chǎn)品采用記分制:兩天全不通過檢查得0分;通過1天、2天分別得1分、2分.求該車間這兩天的所得分ξ的數(shù)學(xué)期望.
(Ⅱ)(文)求兩天全部通過的概率.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:044
已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,向量m=(2sinB,-),n=(cos2B,2cos2-1),且m∥n,B為銳角.
(Ⅰ)求角B的大;
(Ⅱ)如果b=2,求△ABC的面積S△ABC的最大值.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:044
已知f(x)=xlnx,g(x)=-x2+ax-3
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx>-成立.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:044
已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線y=-x是雙曲線S的一條漸近線,且原點(diǎn)O、點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式成立.
(Ⅰ)求雙曲線S的方程;
(Ⅱ)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線l:y=kx+4對(duì)稱,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:044
如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,D、E分別為AB、CD的中點(diǎn),AE的延長(zhǎng)線交CB于F.現(xiàn)將△ACD沿CD折起,折成二面角A-CD-B,連接AF.
(Ⅰ)求證:平面AEF⊥平面CBD;
(Ⅱ)當(dāng)AC⊥BD時(shí),求二面角A-CD-B大小的余弦值.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:044
已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a=2a+anan+1,且a2+a4=2a3+4,其中n∈N*.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,令bn=,其中n∈N*,試比較與的大小,并加以證明.
查看答案和解析>>
科目: 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:044
上海世博會(huì)深圳館1號(hào)作品《大芬麗莎》是由大芬村507名畫師集體創(chuàng)作的999幅油畫組合而成的世界名畫《蒙娜麗莎》,因其誕生于大芬村,因此被命名為《大芬麗莎》.某部門從參加創(chuàng)作的507名畫師中隨機(jī)抽出100名畫師,測(cè)得畫師年齡情況如下表所示.
(1)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并補(bǔ)全頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這507名畫師中年齡在[30,35)歲的人數(shù)(結(jié)果取整數(shù));
(2)在抽出的100名畫師中按年齡再采用分層抽樣法抽取20人參加上海世博會(huì)深圳館志愿者活動(dòng),其中選取2名畫師擔(dān)任解說員工作,記這2名畫師中“年齡低于30歲”的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com