科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:填空題
在極坐標系中,已知點,C是曲線上任意一點,則的面積的最小值等于 .
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:填空題
某公司向市場投放三種新型產(chǎn)品,經(jīng)調(diào)查發(fā)現(xiàn)第一種產(chǎn)品受歡迎的概率為,第二、第三種產(chǎn)品受歡迎的概率分別為,,且不同種產(chǎn)品是否受歡迎相互獨立.記為公司向市場投放三種新型產(chǎn)品受歡迎的數(shù)量,其分布列為
0 |
1 |
2 |
3 |
|
P |
a |
d |
則 .
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:填空題
給出定義:若(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作,在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個命題:①函數(shù)的定義域為,值域為;②函數(shù)在上是增函數(shù);③函數(shù)是周期函數(shù),最小正周期為;④函數(shù)的圖像關(guān)于直線對稱.其中正確命題的序號是 .
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題
,,則是( 。
A.最小正周期為的奇函數(shù)
B.最小正周期為的偶函數(shù)
C.最小正周期為的奇函數(shù)
D.最小正周期為的偶函數(shù)
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題
“”是“函數(shù)有零點”的( 。
A.充要條件 B. 必要非充分條件
論0 C.充分非必要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知復(fù)數(shù)滿足(為虛數(shù)單位),復(fù)數(shù),則一個以為根的實系數(shù)一元二次方程是( 。
A. B.
論0 C. D.
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若已知曲線: ,圓: ,斜率為的直線與圓相切,切點為,直線與曲線相交于點,,則直線的斜率為( 。
A.1 B.
C. D.
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,,.
(1)求證:平面;
(2)求二面角的大。
【解析】第一問利用線面垂直的判定定理和建立空間直角坐標系得到法向量來表示二面角的。
第二問中,以A為原點,如圖所示建立直角坐標系
,,
設(shè)平面FAE法向量為,則
,,
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).]
(1)求函數(shù)的最小值和最小正周期;
(2)設(shè)的內(nèi)角、、的對邊分別為,,,且,,
若,求,的值.
【解析】第一問利用
得打周期和最值
第二問
,由正弦定理,得,①
由余弦定理,得,即,②
由①②解得
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
某省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻(時) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且.
(1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進行證明;
(2)若用每天的最大值作為當天的綜合放射性污染指數(shù),并記作,求;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標?
【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。
第二問(2)由函數(shù)的單調(diào)性知,
∴,即t的取值范圍是.
當時,記
則
∵在上單調(diào)遞減,在上單調(diào)遞增,
第三問因為當且僅當時,.
故當時不超標,當時超標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com