【題目】已知函數(shù) ,(a為常數(shù)且a>0).
(1)若函數(shù)的定義域?yàn)? ,值域?yàn)? ,求a的值;
(2)在(1)的條件下,定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度為n﹣m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過 ,求b的取值范圍.
【答案】
(1)解:由三角函數(shù)公式化簡可得:
f(x)=a(sinxcosx+ + cos2x)
=a( sin2x+ + cos2x)
=a[ +sin(2x+ )],
∵x∈ ,∴2x+ ∈[ , ],
∴sin(2x+ )∈[﹣ ,1],
∴ +sin(2x+ )∈[0,1+ ],
∵由已知可得函數(shù)值域?yàn)? ,
∴a=1
(2)解:由題意可得 ,即
要使解集構(gòu)成的各區(qū)間的長度和超過 ,需 ,解得
【解析】(1)由三角函數(shù)公式化簡可得f(x)=a[ +sin(2x+ )],由已知函數(shù)的值域可得a值.(2)由題意可得 要使解集構(gòu)成的各區(qū)間的長度和超過 ,需 ,解不等式可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的一次數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績X近似服從正態(tài)分布N(70,100).已知成績在90分以上(含90分)的學(xué)生有16名.
(1)試問此次參賽的學(xué)生總數(shù)約為多少人?
(2)若該校計(jì)劃獎(jiǎng)勵(lì)競賽成績在80分以上(含80分)的學(xué)生,試問此次競賽獲獎(jiǎng)勵(lì)的學(xué)生約為多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列各條件的橢圓的標(biāo)準(zhǔn)方程.
(1)長軸長是短軸長的2倍且經(jīng)過點(diǎn)A(2,0);
(2)短軸一個(gè)端點(diǎn)與兩焦點(diǎn)組成一個(gè)正三角形,且焦點(diǎn)到同側(cè)頂點(diǎn)的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn).若A是PB的中點(diǎn),求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正實(shí)數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點(diǎn),E,F(xiàn),G分別是BC,CD和SC的中點(diǎn).求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司研究一款暢銷保險(xiǎn)產(chǎn)品的保費(fèi)與銷量之間的關(guān)系,根據(jù)歷史經(jīng)驗(yàn),若每份保單的保費(fèi)在元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下組與的對(duì)應(yīng)數(shù)據(jù):
(1)試據(jù)此求出關(guān)于的線性回歸方程;
(2)若把回歸方程當(dāng)做與的線性關(guān)系,試計(jì)算每份保單的保費(fèi)定為多少元此產(chǎn)品的保費(fèi)總收入最大,并求出該最大值;
參考公式:
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com