數(shù)列{an}:1,-
5
8
,
7
15
,-
9
24
,…的一個通項公式是( 。
A、an=(-1)n+1
2n-1
n2+n
(n∈N+
B、an=(-1)n-1
2n-1
n2+3n
(n∈N+
C、an=(-1)n+1
2n-1
n2+2n
(n∈N+
D、an=(-1)n-1
2n+1
n2+2n
(n∈N+
考點:數(shù)列的概念及簡單表示法
專題:計算題,等差數(shù)列與等比數(shù)列
分析:觀察數(shù)列各項,可寫成:
3
1×3
,-
5
2×4
,
7
3×5
,-
9
4×6
,即可得出結(jié)論.
解答: 解:觀察數(shù)列各項,可寫成:
3
1×3
,-
5
2×4
,
7
3×5
,-
9
4×6
,
故選:D.
點評:本題考查了通過觀察分析歸納求出數(shù)列的通項公式的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2x-
1
x
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在實數(shù)集上,它的圖象關(guān)于直線x=1對稱,且當(dāng)x≥1時,f(x)=3x-1,則有( 。
A、f(
1
3
)<f(
3
2
)<f(
2
3
B、f(
2
3
)<f(
3
2
)<f(
1
3
C、f(
2
3
)<f(
1
3
)<f(
3
2
D、f(
3
2
)<f(
2
3
)<f(
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x=2時,如圖的程序運行后輸出的結(jié)果是(  )
 
A、3B、7C、15D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=16,sinC=cosAsinB,S△ABC=6,P為線段AC上的點,且
BP
=x
BA
|
BA
|
+y
BA
|BA|
,則xy的最大值為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xcosθ+y+m=0的傾斜角范圍是( 。
A、[
π
4
4
]
B、[0,
π
4
]∪[
4
,π)
C、[0,
π
4
]
D、[
π
4
π
2
)∪(
π
2
,
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=ax2+x,若對于?x∈[-1,1],f(x+a)≤f(x)恒成立,則負數(shù)a的取值范圍是(  )
A、[1-
3
,0)
B、[1-
2
,0)
C、(-
1
2
,1-
2
]
D、(-1,1-
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點F,點A是兩曲線的一個交點,且AF⊥x軸,則雙曲線的離心率為( 。
A、
2
+2
B、
5
+1
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面α⊥平面β,α∩β=l,A∈l,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,且AB=4,AC=3,BD=12,則CD等于( 。
A、8B、10C、13D、16

查看答案和解析>>

同步練習(xí)冊答案