設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值為12,則z的最小值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,先求出最優(yōu)解,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x+y得y=-x+z,則直線截距最大時(shí),z也最大.
平移直線y=-x+z由圖象可知當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)B時(shí),
直線y=-x+z的截距最大,此時(shí)z最大為12,
即x+y=12,
x+y=12
x-y=0
,得
x=6
y=6
,即B(6,6),此時(shí)B也在直線y=k上,
∴k=6,
當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),
直線y=-x+z的截距最小,此時(shí)z最小,
y=6
x+2y=0
,即
x=-12
y=6
,即A(-12,6),
此時(shí)z=x+y=-12+6=-6,
故答案為:-6
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=1-ex的圖象與y軸相交于點(diǎn)P,則曲線在點(diǎn)P處的切線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABD中,∠BAD=
π
2
,|
AD
|=2,
BD
DC
(λ>0),若
AC
AD
=6,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若遞增等差數(shù)列{an}滿足a2a3=45,a1+a4=14,則數(shù)列{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-2x+x2的單調(diào)遞減區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x、y為非零實(shí)數(shù),代數(shù)式
x2
y2
+
y2
x2
-8(
x
y
+
y
x
)+15的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的外接圓的圓心為O,AB=3,AC=5,BC=
7
,則
AO
BC
=( 。
A、-8B、-1C、1D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,2an+1=2an+1,則a99的值為( 。
A、49B、50C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
-3-i
1+2i
=( 。
A、1-3i
B、
-1-7i
5
C、-
1
5
+i
D、-1+i

查看答案和解析>>

同步練習(xí)冊(cè)答案