已知四棱錐P-ABCD的底面是平行四邊形,AD=2AB,∠ABC=60°,PA⊥面ABCD,且PA=AD.若E為PC中點,F(xiàn)為線段PD上的點,且PF=2FD.
(1)求證:BE∥平面ACF;
(2)求PC與平面PAD所成角的正弦值.
考點:直線與平面所成的角,直線與平面平行的判定
專題:空間角
分析:(1)連結BD交AC于O,取PF中點G,連結OF,BG,EG,利用EO,EG分別為BG,F(xiàn)C的中位線,得到它們對應平行,進而得到平面BEG與平面ACF平行,再由面面平行的性質得到線面平行.
(2)要求線面角,需要先找到線面角的代表角,即過C點做面PAD的垂線,因為PA垂直于底面,所以過C作線段AD的垂線與AD交于H,則CH垂直于面PAD,所以角CPH即為線面角的代表角,要求該角的正弦值,就需要求出PC與CH,可以利用△PAC和△ACH為直角三角形通過勾股定理求出,進而得到線面角的正弦值.
解答: (1)證明:連結BD交AC于點O,
取PF的中點G,連結OF,BG,EG,
∵O,F(xiàn)分別是DB,DG的中點,∴OF∥BG,
∵E,G分別是PC,PF的中點,∴EG∥CF,
∴平面BEG∥平面ACF,
又∵BE?平面BEG,
∴BE∥平面ACF. 
(2)∵BC=2AB,∠ABC=60°,
∴∠BAC=90°.
過C作AD的垂線,垂足為H,則CH⊥AD,CH⊥PA,
∴CH⊥平面PAD.
∴∠CPH為PC與平面PAD所成的角.
設AB=1,則BC=2,AC=
3
,PC=
7
,CH=
3
2

∴sin∠CPH=
CH
PC
=
21
14
,即為所求.
點評:本題考查直線與平面平行的證明,考查直線與平面所成角的正弦值的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
x≥-1
y≥x
3x+2y≤10
,則z=2x+y的最大值為( 。
A、-3
B、
9
2
C、6
D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC=3,AB=2
3
,AC=2.
(Ⅰ)求證:平面PBC⊥平面ABC;
(Ⅱ)求二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,PC⊥底面ABCD,PC=2,且底面ABCD是邊長為1的正方形.E是最短的側棱PC上的動點.
(Ⅰ)求證:P、A、B、C、D五點在同一個球面上,并求該球的體積;
(Ⅱ)如果點F在線段BD上,DF=3BF,EF∥平面PAB,求
PE
EC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,兩條相交線段AB、PQ的四個端點都在拋物線y2=x上,其中,直線AB的方程為x=m,直線PQ的方程為y=
1
2
x+n.
(1)若n=0,∠BAP=∠BAQ,求m的值;
(2)探究:是否存在常數(shù)m,當n變化時,恒有∠BAP=∠BAQ?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀程序框圖,如果輸出的函數(shù)值y在區(qū)間[
1
4
,1]
內(nèi),則輸入的實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-1
,x≥1
1-x
,x<1
,若f(a)+f(0)=3,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法正確的是(  )
A、命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B、“x=-1”是“x2-2x+3=0”的必要不充分條件
C、命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”
D、命題“若x=y,則cosx=cosy”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在原點O,半徑為
a2+b2
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(
2
,0),其短軸上的一個端點到F的距離為
3

(Ⅰ)求橢圓C的方程和其“準圓”方程;
(Ⅱ)點P是橢圓C的“準圓”上的動點,過點P作橢圓的切線l1,l2交“準圓”于點M,N.
(。┊旤cP為“準圓”與y軸正半軸的交點時,求直線l1,l2的方程并證明l1⊥l2
(ⅱ)求證:線段MN的長為定值.

查看答案和解析>>

同步練習冊答案