銷售甲、乙兩種商品所得利潤(rùn)分別為P(單位:萬(wàn)元)和Q(單位:萬(wàn)元),它們與投入資金m(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P=
1
5
m,P=
1
5
m,Q=
3
5
m
.今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資x(單位:萬(wàn)元)
(1)試建立總利潤(rùn)y(單位:萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何投資經(jīng)營(yíng)甲、乙兩種商品,才能使得總利潤(rùn)最大.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)題意,對(duì)甲種商品投資x(萬(wàn)元),對(duì)乙種商品投資(3-x)(萬(wàn)元),利用經(jīng)驗(yàn)公式P=
1
5
m,Q=
3
5
m
,可求經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬(wàn)元)關(guān)于x的函數(shù)表達(dá)式;
(2)利用配方法,可求總利潤(rùn)y的最大值.
解答: 解:(1)根據(jù)題意,對(duì)甲種商品投資x(萬(wàn)元),對(duì)乙種商品投資(3-x)(萬(wàn)元).
所以y=
1
5
x+
3
5
3-x
-----------------------(4分)
其定義域?yàn)閇0,3]-----------------------(6分)
(2)令t=
3-x
,
因?yàn)閤∈[0,3],
所以t∈[0,
3
],有y=
1
5
x+
3
5
3-x
=-
1
5
t2+
3
5
t+
3
5
-------(10分)
=-
1
5
(t-
3
2
)2+
21
20
-----------------(12分)
所以當(dāng)t=
3
2
∈[0,
3
]
時(shí),即x=
3
4
時(shí),ymax=
21
20
--------------(14分)
答:當(dāng)甲商品投入
3
4
萬(wàn)元,乙商品投入
9
4
萬(wàn)元時(shí),總利潤(rùn)最大為
21
20
萬(wàn)元.---------(16分)
點(diǎn)評(píng):本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查函數(shù)的最值,正確建立函數(shù)解析式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

吉安一中新校區(qū)正在如火如荼地建設(shè)中,如圖,某工地的平面圖呈圓心角為120°的扇形AOB,工地的兩個(gè)出入口設(shè)置在點(diǎn)A及點(diǎn)C處,工地中有兩條筆直的小路AD、DC,長(zhǎng)度分別為300米、500米,且DC平行于OB.求該扇形的半徑OA的長(zhǎng)(精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函數(shù)f(x)在A(1,0)處的切線方程;
(Ⅱ)若g′(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:g(x)≥
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且sin2A+sin2B+cos2C=1+sinAsinB
(1)求角C的大。
(2)若c=2,且△ABC的面積為
3
,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有0,1,2,3,4,5六個(gè)數(shù)字.
(1)用所給數(shù)字能夠組成多少個(gè)四位數(shù)?
(2)用所給數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)要求證明下列各題:
(1)用分析法證明:
3
-
2
6
-
5

(2)用分析法證明:1,
2
,3不可能是一個(gè)等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+1|+|x-3|.
(1)求不等式f(x)<6的解集;
(2)若關(guān)于x的方程f(x)=|a-2|有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7個(gè)人排成一列,4名男生必須排在一起,3名女生也必須排在一起,且男甲與乙女不能相鄰,有
 
種排列結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中AB=AC,∠ABC=72°,圓O過(guò)A,B且與BC切于B點(diǎn),與AC交于D點(diǎn),連BD.若BC=2,則AC=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案