已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.
(1);(2).

試題分析:(1)設(shè)出橢圓標(biāo)準(zhǔn)方程,根據(jù)已知條件解出即可;(2)由題意可知,直線的斜率存在且不為,故可設(shè)直線的方程為,A,B點(diǎn)坐標(biāo)為,聯(lián)立直線和橢圓方程,利用韋達(dá)定理得,然后利用直線的斜率依次成等差數(shù)列得出,又,所以,即,然后求出弦長,計算三角形面積,求其最大值.
試題解析:1)設(shè)橢圓方程為,由題意知
,…①
,…②
聯(lián)立①②解得,,所以橢圓方程為        (4分)
2)由題意可知,直線的斜率存在且不為,故可設(shè)直線的方程為
滿足,
消去

,.
因為直線的斜率依次成等差數(shù)列,
所以,,即
,所以,
.                                     (9分)
聯(lián)立    易得弦AB的長為  
又點(diǎn)M到的距離 
所以
平方再化簡求導(dǎo)易得時S取最大值        (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在軸上方有一段曲線弧,其端點(diǎn)軸上(但不屬于),對上任一點(diǎn)及點(diǎn),滿足:.直線,分別交直線兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個頂點(diǎn)為,焦點(diǎn)在軸上,若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)、,當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為.

(1)求橢圓方程.
(2)已知為橢圓的左右兩個頂點(diǎn),為橢圓在第一象限內(nèi)的一點(diǎn),為過點(diǎn)且垂直軸的直線,點(diǎn)為直線與直線的交點(diǎn),點(diǎn)為以為直徑的圓與直線的一個交點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓 ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點(diǎn)為,且其短軸上的一個端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)作直線,使得與橢圓都只有一個交點(diǎn),試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則p的值為(   )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左、右焦點(diǎn)分別為,弦AB過,若的內(nèi)切圓周長為,A,B兩點(diǎn)的坐標(biāo)分別為,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1(-c, 0), F2(c, 0)是橢圓(a>b>0)的兩個焦點(diǎn),P是以|F1F2|為直徑的圓與橢圓的一個交點(diǎn),且∠PF1F2=5∠PF2F1,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn).則|ON|等于(    )
A.2B.4C.8D.

查看答案和解析>>

同步練習(xí)冊答案