橢圓上一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn).則|ON|等于(    )
A.2B.4C.8D.
B

試題分析:設(shè)橢圓的另一焦點(diǎn)為,∵,∴,連接,,在中,的中位線,∴,∴選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),右準(zhǔn)線

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與右準(zhǔn)線相交于點(diǎn),試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過(guò)定點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過(guò)點(diǎn)且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,上頂點(diǎn)為,過(guò)三點(diǎn)作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)到直線的距離為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)是,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知分別為橢圓的兩個(gè)焦點(diǎn),點(diǎn)為其短軸的一個(gè)端點(diǎn),若為等邊三角形,則該橢圓的離心率為(    )
A.  B. C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案