【題目】已知數(shù)列滿足:,,.
(1)求的值;
(2)設(shè),求證:數(shù)列是等比數(shù)列,并求出其通項公式;
(3)對任意的,,在數(shù)列中是否存在連續(xù)的項構(gòu)成等差數(shù)列?若存在,寫出這項,并證明這項構(gòu)成等差數(shù)列:若不存在,請說明理由.
【答案】(1),,;(2)證明見解析,(3)存在;在數(shù)列中,這連續(xù)的項就構(gòu)成一個等差數(shù)列;證明見解析
【解析】
(1)2,4為偶數(shù),代入,可得,同理3,5代入,可得;(2)根據(jù)等式,分別表示出和,,由于是偶數(shù),故用到部分,那么整理化簡,可證得是等比數(shù)列,再令n=1可求出,進而得出通項公式;(3)先觀察數(shù)列的前7項,進而猜得這連續(xù)的項就構(gòu)成一個等差數(shù)列,然后用數(shù)學歸納法證明。
(1)因為,所以,,
;
(2)由題意,對于任意的正整數(shù),,所以
又所以.
又
所以是首項為2,公比為2的等比數(shù)列,
所以
(3)存在,事實上,對任意的,,在數(shù)列中,
這連續(xù)的項就構(gòu)成一個等差數(shù)列
我們先用數(shù)學歸納法證明:
“對任意的,,,,有”
1)時,,,命題成立
2)假設(shè)時命題成立,則時,對任意,
(1)當為奇數(shù)時,
(用到歸納假設(shè))
.
(2)當為偶數(shù)時,
(用到歸納假設(shè))
由(1)(2)可知,命題對也成立;
綜合1)2)可得:“對任童的,,有”
對任意的,,
,其中,
所以
所以這連續(xù)的項,是首項為,公差為的等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列對任意的,都有,且,則稱數(shù)列為“k級創(chuàng)新數(shù)列”.
(1)已知數(shù)列滿足且,試判斷數(shù)列是否為“2級創(chuàng)新數(shù)列”,并說明理由;
(2)已知正數(shù)數(shù)列為“k級創(chuàng)新數(shù)列”且,若,求數(shù)列的前n項積;
(3)設(shè),是方程的兩個實根,令,在(2)的條件下,記數(shù)列的通項,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個實數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點.
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點,說明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點.
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】螞蟻森林是支付寶客戶端為首期“碳賬戶”設(shè)計的一款公益行動:用戶通過步行、地鐵出行、在線繳納水電煤氣費、網(wǎng)絡(luò)掛號、網(wǎng)絡(luò)購票等行為就會減少相應(yīng)的碳排放量,可以用來在支付寶里養(yǎng)一棵虛擬的樹.這棵樹長大后,公益組織、環(huán)保企業(yè)等螞蟻生態(tài)伙伴們可以在現(xiàn)實沙漠化地區(qū)(阿拉善、通遼、庫布齊等)種下一棵實體的樹目前通遼地區(qū)對部分基地樟子松幼苗的培育技術(shù)進行了改進,為了了解改進后的效果,現(xiàn)從改進前后的樹苗培育基地各抽取了株產(chǎn)品作為樣本,檢測其同樣生長周期的高度(單位:),若高度不低于才適合移植,否則繼續(xù)等待生長圖1是改進前的樣本的頻率分布直方圖,表2是改進后的樣本頻率分布表.
圖1
表2技術(shù)改進后樣本的頻率分布表
高度 | 頻數(shù) |
(1)根據(jù)圖1和表2提供的信息,試從移植率的角度對培育技術(shù)改進前后的優(yōu)劣進行比較;
(2)估計培育技術(shù)未改進的基地樹苗高度的平均數(shù);
(3)在市場中,規(guī)定高度在內(nèi)的為三等苗,內(nèi)的為二等苗,內(nèi)的為一等苗.現(xiàn)從表2高度不低于的樹苗樣本中采用分層抽樣的方法抽取株,再從這株幼苗中隨機抽取株,求這株中一、二、三等苗都有的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在內(nèi)單調(diào)遞增;
(2)記為函數(shù)的反函數(shù).若關(guān)于的方程在上有解,求的取值范圍;
(3)若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計方案側(cè)面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當時,若要求不超過45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在x軸上分別為左、右焦點,橢圓的一個頂點與兩焦點構(gòu)成等邊三角形,且.
(1)求橢圓方程;
(2)對于x軸上的某一點T,過T作不與坐標軸平行的直線L交橢圓于兩點,若存在x軸上的點S,使得對符合條件的L恒有成立,我們稱S為T的一個配對點,當T為左焦點時,求T的配對點的坐標;
(3)在(2)條件下討論當T在何處時,存在有配對點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com