【題目】設(shè)函數(shù),曲線在點處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)當(dāng)時,若為整數(shù),且,求的最大值.

【答案】(Ⅰ),,(Ⅱ)2

【解析】

)根據(jù)導(dǎo)數(shù)的幾何意義,列方程組,求解即可.

)將變形整理為,即),令,令,則,函數(shù)單調(diào)遞增,從而確定存在唯一的零點,設(shè)此零點為,則并且,即,再判斷的單調(diào)性,確定的最小值為,求解的最大值即可.

)由

由于的斜率為1,且過點得,

解得,.

)由()知

所以得,.

故當(dāng)時,等價于)①

,則

,∵,∴

所以函數(shù)單調(diào)遞增.

,,所以存在唯一的零點

存在唯一的零點,設(shè)此零點為,則

當(dāng)時,,減函數(shù);

當(dāng)時,,增函數(shù);

所以的最小值為,

又由,可得,所以,

故①等價于,故整數(shù)的最大值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABCABC,∠BAC90°,ABACλAA,點M,N分別為ABBC的中點.

1)證明:MN∥平面AACC;

2)若二面角AMNC為直二面角,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,三邊長a,b,c滿足a2a2b2c=0,a+2b2c+3=0,則這個三角形最大角的大小為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即1224,48,,192,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結(jié)論中不一定正確的是(

整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

C.互聯(lián)網(wǎng)行業(yè)中從事設(shè)計崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事市場崗位的90后人數(shù)不足總?cè)藬?shù)的10%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于PQ兩點,且點M滿足.

1)若點,求直線的方程;

2)若直線l過點且不與x軸重合,過點M作垂直于l的直線y軸交于點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,.

1)求的值;

2)設(shè),求證:數(shù)列是等比數(shù)列,并求出其通項公式;

3)對任意的,在數(shù)列中是否存在連續(xù)的項構(gòu)成等差數(shù)列?若存在,寫出這項,并證明這項構(gòu)成等差數(shù)列:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

1)計算,,,,并求數(shù)列的通項公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項組成一個新數(shù)列,,,,設(shè)為數(shù)列的前項和,試求的值.

查看答案和解析>>

同步練習(xí)冊答案