【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )(ω>0)的最小值正周期為π
(1)求ω;
(2)若f( + )= ,且α∈(﹣ , ),求tanα的值.

【答案】
(1)解:∵f(x)=sin(ωx﹣ )(ω>0)的最小值正周期為π,即: =π,

∴ω=2


(2)解:由(1)可得:f(x)=sin(2x﹣ ),

∴f( + )=sin[2( + )﹣ ]=sinα= ,

∵α∈(﹣ ),

∴cosα= =

∴tanα= =


【解析】(1)由已知利用三角函數(shù)周期公式即可計(jì)算得解.(2)由(1)可得:f(x)=sin(2x﹣ ),由已知可求sinα,利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而可求tanα= 的值.
【考點(diǎn)精析】關(guān)于本題考查的兩角和與差的正弦公式,需要了解兩角和與差的正弦公式:才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為, 分別是它的左、右焦點(diǎn),且存在直線,使關(guān)于的對(duì)稱點(diǎn)恰好是圓)的一條直線的兩個(gè)端點(diǎn).

(1)求橢圓的方程;

(2)設(shè)直線與拋物線)相交于兩點(diǎn),射線 與橢圓分別相交于點(diǎn),試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時(shí),總存在,使點(diǎn)在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際奧委會(huì)將于2017年9月15日在秘魯利馬召開(kāi)130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國(guó)漢堡、美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無(wú)關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)階段全國(guó)多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與濃度是否相關(guān),現(xiàn)對(duì)北方某中心城市的車流量最大的地區(qū)進(jìn)行檢測(cè),現(xiàn)采集到月某天個(gè)不同時(shí)段車流量與濃度的數(shù)據(jù),如下表:

車流量(萬(wàn)輛/小時(shí))

濃度 (微克/立方米)

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)規(guī)定當(dāng)濃度平均值在,空氣質(zhì)量等級(jí)為優(yōu);當(dāng)濃度平均值在,空氣質(zhì)量等級(jí)為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測(cè)要將車流量控制在每小時(shí)多少萬(wàn)輛內(nèi)(結(jié)果以萬(wàn)輛做單位,保留整數(shù)).

附:回歸直線方程: ,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)sin(x+y)sinx+cos(x+y)cosx等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸,那么該企業(yè)可獲得最大利潤(rùn)是___________萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}中,a1,前n項(xiàng)和Sn滿足Sn+1-Sn=()n+1(n∈N*).

(1)求數(shù)列{an}的通項(xiàng)公式an以及前n項(xiàng)和Sn;

(2)若S1,t(S1+S2),3(S2+S3)成等差數(shù)列,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, ,的中點(diǎn),是棱上的點(diǎn),,.

(1)求證:平面底面;

(2)設(shè),若二面角的平面角的大小為,試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿足y2<4x的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案