【題目】如圖,某市園林局準備綠化一塊直徑為的半圓空地,以外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若為定值),,設(shè)的面積為,正方形的面積為

(1)用表示

(2)當(dāng)為何值時,取得最大值,并求出此最大值.

【答案】(1) ;(2) 的最大值為,此時.

【解析】試題分析:(1)在RtABC中,BC=a,ABC=α,由AB=acosα,AC=asinα,能求出S1;設(shè)正方形PQRS的邊長為x,則BP=,AP=xcosα,由BP+AP= ,AB=acosα,AP+BP=AB,能求出S2

(2)=,令sin2α=t,推導(dǎo)出=,0t1,設(shè)f(t)=(0t1),推導(dǎo)出f(t)=在(0,1]上單調(diào)遞減,由此能求出的最大值及相應(yīng)的α.

試題解析:

(1)在中,,

所以

設(shè)正方形的邊長為,則

所以

,由,所以

設(shè),任取,

上單調(diào)減,所以,

所以

所以的最大值為,此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某棋類游戲的規(guī)則如下:棋子的初始位置在起點處,玩家每擲出一枚骰子,朝上一面的點數(shù)即為向終點方向前進的格子數(shù),(比如玩家一開始擲出的骰子點數(shù)為3,則走到炸彈所在位置),若踩到炸彈則返回起點重新開始,若達到終點則游戲結(jié)束.現(xiàn)在已知小明擲完三次骰子后游戲恰好結(jié)束,則所有不同的情況種數(shù)__________.

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“雅荷文學(xué)社”、“青春風(fēng)街舞社”、“羽乒協(xié)會”、“演講團”、“吉他協(xié)會”五個社團,若每名同學(xué)必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數(shù)為( )

A. 4680 B. 4770 C. 5040 D. 5200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠2萬元設(shè)計了某款式的服裝,根據(jù)經(jīng)驗,每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)(百套)的銷售額(單位:萬元).

(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤;

(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?

(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設(shè)計費+生產(chǎn)成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形, , , , 、分別是棱、、的中點.

(1)證明:直線平面

(2)求證:面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次綜合素質(zhì)測試中,共設(shè)有60個考場,每個考場30名考生,在考試結(jié)束后,為調(diào)查其測試前的培訓(xùn)輔導(dǎo)情況與測試成績的相關(guān)性,抽取每個考場中座位號為06的考生,統(tǒng)計了他們的成績,得到如圖所示的頻率分布直方圖.

問:

在這個調(diào)查采樣中,采用的是什么抽樣方法?

估計這次測試中優(yōu)秀(80分及以上)的人數(shù);

寫出這60名考生成績的眾數(shù)、中位數(shù)、平均數(shù)的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】亳州某商場舉行購物抽獎活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小求的抽獎箱中,每次取出一球,記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6,則中一等獎;等于5中二等獎;等于4或3中三等獎.

(1)求中三等獎的概率;

(2)求不中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間上的最大值為,求的值;

(3)若,有不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在實數(shù)中定義一種新運算: ,對實數(shù)經(jīng)過運算后是一個確定的唯一的實數(shù)。運算有如下性質(zhì):(1)對任意實數(shù), ;(2)對任意實數(shù), 那么:關(guān)于函數(shù)的性質(zhì)下列說法正確的是:①函數(shù)的最小值為3;②函數(shù)是偶函數(shù);③函數(shù)上為減函數(shù),這三種說法正確的有__________.

查看答案和解析>>

同步練習(xí)冊答案