【題目】如圖,在直四棱柱中,底面為等腰梯形, , , , , 、、分別是棱、、的中點(diǎn).
(1)證明:直線平面;
(2)求證:面面.
【答案】(1)證明見(jiàn)解析 (2)證明見(jiàn)解析
【解析】試題分析:
(1)由題意結(jié)合幾何關(guān)系可證得,結(jié)合線面平行的判斷定理即可證得結(jié)論;
(2)由題意結(jié)合線面垂直的判斷定理即可證得平面,然后利用面面垂直的判斷定理即可證得面面.
試題解析:
(1)在直四棱柱中,取的中點(diǎn),連接, , .
因?yàn)?/span>, ,且,所以,且, 為平行四邊形,所以.
又因?yàn)?/span>、分別是棱、的中點(diǎn),
所以,
所以,
又因?yàn)?/span>平面, 平面,
所以直線平面.
(2)連接,在直棱柱中, 平面, 平面,
所以,
因?yàn)榈酌?/span>為等腰梯形, , , 是棱的中點(diǎn),
所以, 為正三角形,
, 為等腰三角形,且,
所以,
又因?yàn)?/span>與都在平面內(nèi)且交于點(diǎn),
所以平面,而平面,
所以面面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )
A. y與x具有正的線性相關(guān)關(guān)系
B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)求證: 不是上的奇函數(shù);
(2)若是上的單調(diào)函數(shù),求實(shí)數(shù)的值;
(3)若函數(shù)在區(qū)間上恰有3個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,過(guò)與垂直的直線交軸負(fù)半軸于點(diǎn),且.
(1)求橢圓的離心率;
(2)若過(guò)、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(3)過(guò)的直線與(2)中橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市園林局準(zhǔn)備綠化一塊直徑為的半圓空地,以外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若為定值),,設(shè)的面積為,正方形的面積為
(1)用表示;
(2)當(dāng)為何值時(shí),取得最大值,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量函數(shù)
(1)求函數(shù)的值域;
(2)求方程,在內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>為的導(dǎo)函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校用“10分制”調(diào)查本校學(xué)生對(duì)教師教學(xué)的滿(mǎn)意度,現(xiàn)從學(xué)生中隨機(jī)抽取16名,以下莖葉圖記錄了他們對(duì)該校教師教學(xué)滿(mǎn)意度的分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(Ⅰ)若教學(xué)滿(mǎn)意度不低于9.5分,則稱(chēng)該生對(duì)教師的教學(xué)滿(mǎn)意度為“極滿(mǎn)意”.求從這16人中隨機(jī)選取3人,至少有1人是“極滿(mǎn)意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記表示抽到“極滿(mǎn)意”的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com