已知變量x,y滿足約束條件
x≥-1
x-y≤1
|x+y|≤1
,則z=x+2y的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2
,平移直線y=-
1
2
x+
z
2
,由圖象可知當直線經(jīng)過點A時,直線y=-
1
2
x+
z
2
的截距最小,此時z最小,
x+y=-1
x-y=1
,得
x=0
y=-1
,
即A(0,-1)
此時z=0-2×1=-2.
故答案為:-2
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)(-
1
2
+
3
2
i)3的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點作一條直線交拋物線于A,B兩點,若線段AB的中點M的橫坐標為2,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|4-x|-m有3個零點分別為x1,x2,x3,則x1+x2+x3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下四個結論:
①若實數(shù)x,y∈[0,1],則滿足:x2+y2>1的概率為
π
4

②若將函數(shù)f(x)=sin(2x-
π
3
)的圖象向右平移φ(φ>0)個單位后變?yōu)榕己瘮?shù),則φ的最小值是
π
12
;
③曲線y=1+
4-x2
(|x|≤2)與直線y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是(
5
12
,
3
4
];
④已知命題p:拋物線y=2x2的準線方程為y=-
1
2
,命題q:若函數(shù)f(x+1)為偶函數(shù),則f(x)關于x=1對稱,則p∨q為真命題.
其中正確結論的序號是:
 
.(把所有正確結論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β是兩個不同的平面,?是一條直線,則下列命題中正確的是( 。
A、若α⊥β,??α,則?⊥β
B、若?∥α,α∥β,則?∥β
C、若?⊥α,?∥β,則α⊥β
D、若α⊥β,?⊥β,則?∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為x,y,則y=2x的概率為(  )
A、
1
6
B、
1
12
C、
5
36
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有三個不同的信箱,今有四封不同的信欲投其中,則不同的投法有多少種( 。
A、24B、64C、81D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,-2),M是平面區(qū)域
x-y+1≥0
2x+y-4≤0
x≥0,y≥0
內的動點,O為坐標原點,那么
a
OM
的最小值為( 。
A、3B、-3C、2D、-2

查看答案和解析>>

同步練習冊答案