觀察等式:
1
1×2
+
1
2×3
=
2
3
,
1
1×2
+
1
2×3
+
1
3×4
=
3
4
,根據(jù)以上規(guī)律,寫出第四個等式為:
 
分析:觀察所給的兩個等式,發(fā)現(xiàn)左邊都是幾個正整數(shù)乘積的倒數(shù)和的形式,右邊的值為分式的形式分子是左邊的項數(shù),分母是分子加上1,由此類比推廣到第四個等式即可.
解答:解:觀察前面兩個等式可得:
出第四個等式為:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
,
故答案為:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
點評:合情推理中的類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1=1                         13=1
1+2=3                       13+23=9
1+2+3=6                     13+23+33=36
1+2+3+4=10                  13+23+33+43=100
1+2+3+4+5=15                13+23+33+43+53=225

可以推測:13+23+33+…+n3=
n2(n+1)2
4
n2(n+1)2
4
.(n∈N*,用含有n的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察等式:
1
1×2
+
1
2×3
=
2
3
1
1×2
+
1
2×3
+
1
3×4
=
3
4
,
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5

根據(jù)以上規(guī)律,寫出第四個等式為:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15


13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推測:13+23+33+…+n3=
1
4
n2(n+1)2
1
4
n2(n+1)2
(n∈N+,用含有n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省太原五中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

觀察下列等式:
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15


13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推測:13+23+33+…+n3=    (n∈N+,用含有n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案