已知向量
a
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
a
b
方向上的投影為 ( 。
A、-
3
3
2
B、
3
3
2
C、-3
D、3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量垂直的條件即為數(shù)量積為0,求出a,b的數(shù)量積,再由
a
b
方向上的投影為
a
b
|
b
|
,計(jì)算即可得到.
解答: 解:由于|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),
a
•(
a
+
b
)
=0,即有
a
2
+
a
b
=0,
a
b
=-9,
a
b
方向上的投影為
a
b
|
b
|
=
-9
2
3
=-
3
3
2

故選A.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的性質(zhì),考查向量垂直的條件,向量的投影的概念,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為1的球面上,球心O在AB上,SO⊥面ABC,AC=
2
,則該三棱錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c成等比數(shù)列,則函數(shù)y=2ax2+3bx+c與x軸交點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在非零實(shí)數(shù)集上的奇函數(shù)f(x)在(-∞,0)上時(shí)減函數(shù),且f(-3)=0.
(1)求f(3)的值;
(2)求滿足f(x)>0的x的集合;
(3)若g(x)=
2
acos(x+
π
4
)+1-a(a∈R),x∈[
2
,2π],是否存在正實(shí)數(shù)a,使得f(g(x))>0恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=e-5x+2的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為奇函數(shù)且在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx
+
1
2
cos2x,
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式log 
1
2
(x2-5x+7)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x2+
k
x
6(k∈N*)的展開(kāi)項(xiàng)的常數(shù)系數(shù)小于120,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案