【題目】如圖,AB是圓O的直徑,C為圓周上一點,過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E.

(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長.

【答案】
(1)證明:連接BE,OC,AC,OC∩BE=F,則

∵CD是圓O的切線,

∴OC⊥l,

∵AD⊥l,∴AD∥OC,

∵AB是圓O的直徑,∴AD⊥BE,

∵AD⊥l,∴l(xiāng)∥BE,

∴∠DCE=∠CBE=∠CAB,

∵∠EDC=∠BCA=90°,

∴△EDC∽△BCA,

=

∴ABDE=BCCE


(2)解:由(1)可知四邊形EFCD是矩形,

∴DE=CF,

∵圓O的直徑AB=8,BC=4,

∴∠ABC=60°

∴△OBC是等邊三角形,

∴∠EBA=30°,AE=4


【解析】(1)連接BE,OC,OC∩BE=F,證明△EDC∽△BCA,即可證明ABDE=BCCE;(2)證明四邊形EFCD是矩形,△OBC是等邊三角形,即可得出結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(m+x)(1+x)3的展開式中x的奇數(shù)次冪項的系數(shù)之和為16,則 xmdx=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x(1+a|x|),aR

(1)當a=-1時,求函數(shù)的零點;

(2)若函數(shù)fx)在R上遞增,求實數(shù)a的取值范圍;

(3)設關于x的不等式fx+a)<fx)的解集為A,若,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).

(1)假設,現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?

(2)假設數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù), 為常數(shù).

(1)確定的值;

(2)求證: 上的增函數(shù);

(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2x-P2-x,則下列結論正確的是( 。

A. ,為奇函數(shù)且為R上的減函數(shù)

B. ,為偶函數(shù)且為R上的減函數(shù)

C. ,為奇函數(shù)且為R上的增函數(shù)

D. 為偶函數(shù)且為R上的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值時角A,C的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題中:

①命題“若x≥2且y≥3,則x+y≥5”為假命題.

②命題“若x2-4x+3=0,則x=3”的逆否命題為:“若x≠3,則x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要條件

④關于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓上一點M作圓的兩條切線,切點為A、B,過A、B的直線與軸和軸分別交于,則面積的最小值為( )

A. B. 1 C. D.

查看答案和解析>>

同步練習冊答案