【題目】近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機遇,網(wǎng)購成了大眾購物的一個重要組成部分,可人們在開心購物的同時,假冒偽劣產(chǎn)品也在各大購物網(wǎng)站頻頻出現(xiàn),為了讓顧客能夠在網(wǎng)上買到貨真價實的好東西,各大購物平臺也推出了對商品和服務(wù)的評價體系,現(xiàn)從某購物網(wǎng)站的評價系統(tǒng)中選出100次成功的交易,并對其評價進(jìn)行統(tǒng)計,對商品的好評率為 ,對服務(wù)的好評率為 ,其中對商品和服務(wù)都做出好評的交易為30次.
(1)列出關(guān)于商品和服務(wù)評價的2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若針對商品的好評率,采用分層抽樣的方式從這100次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
【答案】
(1)解:由題意可得關(guān)于商品和服務(wù)評價的2×2列聯(lián)表:
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 30 | 30 | 60 |
對商品不滿意 | 10 | 30 | 40 |
合計 | 40 | 60 | 100 |
計算K2= =6.25<6.635,
所以不可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)
(2)解:若針對商品的好評率,采用分層抽樣的方式從這100次交易中取出5次交易,
則好評的交易次數(shù)為3次,不滿意的次數(shù)為2次,令好評的交易為A、B、C,
不滿意的交易為d、e,從5次交易中,取出2次的所有取法為
AB、AC、Ad、Ae、BC、Bd、Be、Cd、Ce、de,共計10種情況,
其中只有一次好評的情況是
Ad、Ae、Bd、Be、Cd、Ce,共計6種,
因此,只有一次好評的概率為P= =
【解析】(1)由題意得出2×2列聯(lián)表,計算觀測值K2 , 比較數(shù)表即可得出結(jié)論;(2)利用列舉法計算基本事件數(shù),即可求出對應(yīng)的概率值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱柱ABC﹣A1B1C1的,底面邊長是側(cè)棱長2倍,D、E是A1C1、AC的中點,則下面判斷不正確的為( )
A.直線A1E∥平面B1DC
B.直線AD⊥平面B1DC
C.平面B1DC⊥平面ACC1A1
D.直線AC與平面B1DC所成的角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( )
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,求圓的方程
(1)求經(jīng)過兩點 ,且圓心在y軸上的圓的方程;
(2)圓的的半徑為1,圓心與點(1,0)關(guān)于 對稱的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B是x軸上的兩點,點P的橫坐標(biāo)為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如如圖,SD垂直于正方形ABCD所在的平面, .
(1)求證:BC⊥SC;
(2)設(shè)棱SA的中點為M,求異面直線DM與SC所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com