【題目】如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn).直線與平面的距離為( )

A.B.C.D.

【答案】B

【解析】

根據(jù)底面,得到,再由底面為矩形,得到,利用線面垂直的判定定理得到 平面,從而得到平面平面,則點(diǎn)AFD的距離,即點(diǎn)A到平面的距離,根據(jù),則平面,則點(diǎn)A到平面的距離,即為直線AB到平面的距離,然后在中求解.

如圖所示:

PA的中點(diǎn)F,連接EF,FD

因?yàn)?/span>底面,所以,

因?yàn)榈酌?/span>為矩形,所以,

所以平面,又平面,

所以平面平面,平面平面,

所以點(diǎn)AFD的距離,即為點(diǎn)A到平面的距離,

因?yàn)?/span>,平面,平面

所以平面,

所以點(diǎn)A到平面的距離,即為直線AB到平面的距離,

中,,

所以點(diǎn)AFD的距離為.

故直線與平面的距離為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形,,將沿折起來,使平面平面.如圖,設(shè)的中點(diǎn),的中點(diǎn)為.

)求證:平面.

)求平面與平面所成銳二面角的余弦值.

)在線段上是否存在點(diǎn),使得平面,若存在確定點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)個(gè)

2

3

4

5

加工的時(shí)間小時(shí)

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出關(guān)于的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;

(3)試預(yù)測(cè)加工個(gè)零件需要多少時(shí)間?

參考公式:回歸直線其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有三點(diǎn),其中點(diǎn)在橢圓上,,,且.

(1)求橢圓的方程;

(2)若過橢圓的右焦點(diǎn)的直線傾斜角為,直線與橢圓相交于,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時(shí)的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(1)求抽取的20人中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù);

(2)從參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時(shí)間在同一時(shí)間段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于實(shí)數(shù)x的一元二次方程

a是從區(qū)間中任取的一個(gè)整數(shù),b是從區(qū)間中任取的一個(gè)整數(shù),求上述方程有實(shí)根的概率.

a是從區(qū)間任取的一個(gè)實(shí)數(shù),b是從區(qū)間任取的一個(gè)實(shí)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評(píng)價(jià)該產(chǎn)品的等級(jí). S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機(jī)抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號(hào)

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(Ⅱ) 在該樣品的一等品中, 隨機(jī)抽取兩件產(chǎn)品,

(1) 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;

(2) 設(shè)事件B在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)lg(k∈R,且k>0)

(1)求函數(shù)f(x)的定義域;

(2)若函數(shù)f(x)[10,+∞)上單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案