求導數(shù):y=
1-2x2
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)復合函數(shù)導數(shù)的運算法則進行求解即可.
解答: 解:函數(shù)的f(x)的導數(shù)y′=
1
2
(1-2x) 
1
2
-1
•(1-2x2)′=
1
2
(1-2x) -
1
2
•(-4x)=-
2x
1-2x2
點評:本題主要考查導數(shù)的計算,根據(jù)復合函數(shù)的導數(shù)公式是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一圓柱的底面直徑和高都是3,則它的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知t+sinx=
1
3
,x∈(
π
6
,
3
],求μ=t-cos2x的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(2x-
4
)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(πx+φ)的導數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與2015°終邊相同的最小正角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(
3
2
+
1
2
i)(-
1
2
+
3
2
i).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入x萬元,甲、乙兩種商品可分別獲得y1,y2萬元的利潤,利潤曲線P1,P2如圖所示.問怎樣分配投資額,才能使投資獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-2x
2x
在區(qū)間[1,2]上的最大值
 
,最小值
 

查看答案和解析>>

同步練習冊答案