【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的零點(diǎn).
(1)求的取值范圍;
(2)記兩個零點(diǎn)為,且,已知,若不等式恒成立,求的取值范圍.
【答案】(1)
(2)
【解析】
(1)根據(jù)零點(diǎn)與方程的關(guān)系,分離參數(shù)后構(gòu)造函數(shù),并求得,結(jié)合導(dǎo)函數(shù)的符號判斷的單調(diào)性,從而求得最大值;由時的極限,即可確定函數(shù)與函數(shù)的圖象在上有兩個不同交點(diǎn)時的取值范圍;
(2)根據(jù)零點(diǎn)定義,將代入可得,.再結(jié)合不等式代入化簡并分離參數(shù);由,,作差也可分離參數(shù),將兩個式子合并化簡,令,再構(gòu)造函數(shù),再求得,對分類討論,由的單調(diào)性與極值,即可確定的取值范圍.
(1)依題意,函數(shù)在定義域上有兩個不同的零點(diǎn),即方程在)上有兩個不同的解,也即在上有兩個不同的解.
令,則.
當(dāng)時,,所以在上單調(diào)逆增,
當(dāng)時,,所以在上單調(diào)遞減,
所以.
又,時,
當(dāng)時,,且,
若函數(shù)與函數(shù)的圖象在上有兩個不同的交點(diǎn),
則.
(2)因?yàn)?/span>為方程的兩根,
所以,.
不等式,變形可得,
代入可得.
因?yàn)?/span>,,所以原不等式等價于.
又由,,作差得,所以.
所以原不等式等價于恒成立.
令,則,不等式等價于在上恒成立.
令,則.
①當(dāng)時,,所以在上單調(diào)遞,因此,滿足條件;
②當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,又,所以在上不能恒小于零.
綜上,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,中華人民共和國成立70周年,為了慶祝建國70周年,某中學(xué)在全校進(jìn)行了一次愛國主義知識競賽,共1000名學(xué)生參加,答對題數(shù)(共60題)分布如下表所示:
組別 | ||||||
頻數(shù) | 10 | 185 | 265 | 400 | 115 | 25 |
答對題數(shù)近似服從正態(tài)分布,為這1000人答對題數(shù)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).
(1)估計答對題數(shù)在內(nèi)的人數(shù)(精確到整數(shù)位).
(2)學(xué)校為此次參加競賽的學(xué)生制定如下獎勵方案:每名同學(xué)可以獲得2次抽獎機(jī)會,每次抽獎所得獎品的價值與對應(yīng)的概率如下表所示.
獲得獎品的價值(單位:元) | 0 | 10 | 20 |
概率 |
用(單位:元)表示學(xué)生甲參與抽獎所得獎品的價值,求的分布列及數(shù)學(xué)期望.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線與間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某便利店計劃每天購進(jìn)某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時每瓶調(diào)劑品可獲利元.
(1)若便利店一天購進(jìn)鮮奶瓶,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天鮮奶需求量(單位:瓶,)的函數(shù)解析式;
(2)便利店記錄了天該鮮奶的日需求量(單位:瓶,)整理得下表:
日需求量 | ||||||
頻數(shù) |
若便利店一天購進(jìn)瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天利潤在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線和圓的普通方程;
(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè),現(xiàn)有下述四個結(jié)論:
①水深為12尺;②蘆葦長為15尺;③;④.
其中所有正確結(jié)論的編號是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com