【題目】設(shè)D是含數(shù)1的有限實(shí)數(shù)集,f(x)是定義在D上的函數(shù)。若f(x)的圖像繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與原圖像重合,則在以下各項(xiàng)中,f(1)的取值只可能是( )
A. B. C. D. 0
【答案】B
【解析】分析:直接利用定義函數(shù)的應(yīng)用求出結(jié)果.
詳解:設(shè)f(1)處的點(diǎn)為A1,若f(x)逆時(shí)針旋轉(zhuǎn)后與原圖重合,則旋轉(zhuǎn)后A1的對(duì)應(yīng)點(diǎn)A2也在f(x)的圖像上,同理有A2的對(duì)應(yīng)點(diǎn)A3也在其圖像上,以此類推。于是f(x)對(duì)應(yīng)的圖象可以為一個(gè)圓周上的12等分的12個(gè)點(diǎn)。
當(dāng)f(1)=時(shí),即A1(1,),容易驗(yàn)證A9(1, -),這顯然不符合函數(shù)的定義,故A項(xiàng)錯(cuò)誤。
同理,可以驗(yàn)證C,D項(xiàng)均錯(cuò)誤。
故f(1)的可能取值只能是。
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品有4只次品和6只正品,每只產(chǎn)品均不相同且可區(qū)分,今每次取出一只來測試,直到這4只次品全測出為止,則最后一只次品恰好在第五次測試時(shí)被發(fā)現(xiàn),則不同情況種數(shù)是______(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對(duì)任意平面向量,把繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角得到向量,,叫做把點(diǎn)繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角得到點(diǎn).
(1)已知平面內(nèi)點(diǎn),點(diǎn),把點(diǎn)繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)后得到點(diǎn),求點(diǎn)的坐標(biāo);
(2)設(shè)平面內(nèi)曲線上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡方程是曲線,求原來曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,在四棱錐P—ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求點(diǎn)D到平面PBC的距離;
(2)設(shè)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQ與DP所成的角最小時(shí),求二面角B-CQ-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對(duì)邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.
(1)求證:平面平面;
(2)求證:平面P;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com