【題目】已知對任意平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)角得到向量,,叫做把點繞點逆時針方向旋轉(zhuǎn)角得到點.

(1)已知平面內(nèi)點,點,把點繞點順時針方向旋轉(zhuǎn)后得到點,求點的坐標;

(2)設(shè)平面內(nèi)曲線上的每一點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的點的軌跡方程是曲線,求原來曲線的方程.

【答案】(1)(2)

【解析】

(1)求出向量的坐標表示,由點繞點順時針方向旋轉(zhuǎn)后得到點,相當于點繞點逆時針方向旋轉(zhuǎn),設(shè)出點的坐標,寫出向量的坐標,根據(jù)已知給的公式,得到一個二元一次方程組,解這個方程組,求出點的坐標;

2)設(shè)平面內(nèi)曲線上的每一點,繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的點,根據(jù)已知條件給的公式,可以得到一個方程組,可以分別求出的關(guān)系,結(jié)合,可以求出原來曲線的方程.

由已知可得:

將點繞點順時針方向旋轉(zhuǎn),即是點繞點逆時針方向旋轉(zhuǎn)

即可得到點

設(shè)點,則

所以

所以,解得

所以點的坐標為

(2)設(shè)平面內(nèi)曲線上的每一點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的點

,所以,即

所以曲線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于函數(shù)的判斷正確的是(  )

的解集是;

極小值,是極大值;

沒有最小值,也沒有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以, , , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分數(shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分數(shù)為, , , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在的學生中應抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)要完成下列3項抽樣調(diào)查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學校校務(wù)公開方面的意見,擬抽取一個容量為20的樣本.

③渦陽縣某中學報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結(jié)束后,為了聽取意見,需要請28名聽眾進行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)D是含數(shù)1的有限實數(shù)集,f(x)是定義在D上的函數(shù)。若f(x)的圖像繞原點逆時針旋轉(zhuǎn)后與原圖像重合,則在以下各項中,f(1)的取值只可能是( )

A. B. C. D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的圖象過點

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;

(3)若函數(shù) ,則是否存在實數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人準備在一塊占地面積為1800平方米的矩形地塊中間建三個矩形溫室大棚,大棚周圍均是寬為1米的小路(如圖所示),大棚占地面積為平方米,其中.

(1)試用表示;

(2)若要使的值最大,則的值各為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某拋擲骰子游戲中,規(guī)定游戲者可以有三次機會拋擲一顆骰子若游戲者在前兩次拋擲中至少成功一次才可以進行第三次拋擲,其中拋擲骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.游戲規(guī)則如下:拋擲1枚骰子,第1次拋擲骰子向上的點數(shù)為奇數(shù)則記為成功,第2次拋擲骰子向上的點數(shù)為3的倍數(shù)則記為成功,第3次拋擲骰子向上的點數(shù)為6則記為成功.用隨機變量表示該游戲者所得分數(shù).

(1)求該游戲者有機會拋擲第3次骰子的概率;

(2)求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案