甲、乙兩人約定傍晚6時到7時之間在某處會面,并約定先到者應(yīng)等候另一人20分鐘,過時即可離去,則兩人在傍晚6時到7時之間會面的概率是
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:分析:由題意知本題是一個幾何概型,試驗(yàn)發(fā)生包含的所有事件對應(yīng)的集合是Ω={(x,y)|6≤x≤7,6≤y≤7}作出集合對應(yīng)的面積是邊長為1的正方形的面積,寫出滿足條件的事件對應(yīng)的集合和面積,根據(jù)面積之比得到概率.
解答: 解:由題意知本題是一個幾何概型,
∵試驗(yàn)發(fā)生包含的所有事件對應(yīng)的集合是Ω={(x,y)|6≤x≤7,6≤y≤7},
集合對應(yīng)的面積是邊長為1的正方形的面積s=1,
而滿足條件的事件對應(yīng)的集合是{(x,y)|6≤x≤7,6≤y≤7,|x-y|≤
1
3
},
對應(yīng)的區(qū)域?yàn)殛幱安糠,其中A(
19
3
,6),B(7,6),C(7,
20
3
),
則△ABC的面積為
1
2
×
2
3
×
2
3
=
2
9
,
∴兩人能夠會面的概率是
1-2×
2
9
1
=
5
9

故答案為:
5
9
點(diǎn)評:本題的難點(diǎn)是把時間分別用x,y坐標(biāo)來表示,從而把時間長度這樣的一維問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型的幾何概型問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=mx2+x+1在區(qū)間(1,2)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x+1
y≥2x-4
x+2y≥2
,則目標(biāo)函數(shù)z=3x-2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

無論k取何值時,方程x2-5x+4=k(x-a)的相異實(shí)根個數(shù)總是2,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=90°,AD⊥BC,DE⊥AE,D、E為垂足,若AE=4,BE=1,則AC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx,g(x)=sin(2x+
π
2
),有下列命題:
①當(dāng)ω=2時,函數(shù)y=f(x)g(x)是最小正周期為
π
2
的偶函數(shù);
②當(dāng)ω=1時,f(x)+g(x)的最大值為
9
8
;
③當(dāng)ω=2時,將函數(shù)f(x)的圖象向左平移
π
2
可以得到函數(shù)g(x)的圖象.
其中正確命題的序號是
 
(把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

荷花池中,有一只青蛙在成品字形的三片荷葉上跳來跳去(每次跳躍時,均從一葉跳到另一葉),而且逆時針方向跳的概率是順時針方向跳的概率的兩倍,如圖所示.假設(shè)現(xiàn)在青蛙在A葉上,則跳四次之后停在A葉上的概率是( 。
A、
4
9
B、
8
27
C、
16
81
D、
32
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出程序框圖,若輸入的x值為-5,則輸出的y的值是( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x,F(xiàn)為其焦點(diǎn),點(diǎn)E的坐標(biāo)為(2,0),設(shè)M為拋物線C上異于頂點(diǎn)的動點(diǎn),直線MF交拋物線C于另一點(diǎn)N,鏈接ME,NE并延長分別交拋物線C與點(diǎn)P,Q.
(1)當(dāng)MN⊥Ox時,求直線PQ與x軸的交點(diǎn)坐標(biāo);
(2)當(dāng)直線MN,PQ的斜率存在且分別記為k1,k2時,求證:k1=2k2

查看答案和解析>>

同步練習(xí)冊答案