【題目】已知橢圓E:()的左右焦點(diǎn)分別是,離心率,點(diǎn)在橢圓E上.

1)求橢圓E的方程;

2)如圖,分別過(guò)作兩條互相垂直的弦ACBD,求的最小值.

【答案】12

【解析】

1)由離心率求出關(guān)系,化簡(jiǎn)標(biāo)準(zhǔn)方程,將點(diǎn)代入方程,即可求解;

2)先考率兩直線斜率為0或斜率不存在的情況,當(dāng)兩直線斜率存在且不等于0,設(shè)出直線方程,可以是點(diǎn)斜式(或軸截距式),與橢圓方程聯(lián)立,求出相交弦長(zhǎng),進(jìn)而得到關(guān)于斜率(或斜率倒數(shù))的目標(biāo)函數(shù),轉(zhuǎn)化求函數(shù)的最值,即可求解.

:1)由已知,

將點(diǎn)代入得

,

橢圓E方程為:

2)解法一:由已知,

①當(dāng)軸或在軸上時(shí),

,,或,,

②當(dāng)直線斜率存在且不為0時(shí),

,設(shè)直線AC方程為:

聯(lián)立:

設(shè),

,

,由橢圓對(duì)稱性,以代換上式中的k:

,

思路一:

,

當(dāng)且僅當(dāng)時(shí),取“=”

,有最小值

思路二:設(shè),則

當(dāng)且僅當(dāng),,

時(shí),有最小值

有最小值

解法二:由已知,設(shè)直線AC:

聯(lián)立:

設(shè),,

,由橢圓對(duì)稱性,以代換上式中的:

思路一

,

當(dāng)且僅當(dāng)時(shí),取“=”,

有最小值

思路二:設(shè)

當(dāng)且僅當(dāng),時(shí),有最小值

有最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),若關(guān)于的不等式恒成立,求的取值范圍;

(2)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大報(bào)告明確指出要堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),讓貧困人口和貧困地區(qū)同全國(guó)一道進(jìn)入全面小康社會(huì),要?jiǎng)訂T全黨全國(guó)全社會(huì)力量,堅(jiān)持精準(zhǔn)扶貧、精準(zhǔn)脫貧,確保到2020年我國(guó)現(xiàn)行標(biāo)準(zhǔn)下農(nóng)村貧困人口實(shí)現(xiàn)脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實(shí)施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬(wàn)元,扶貧工作組一方面請(qǐng)有關(guān)專家對(duì)水果進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其戶數(shù)必須小于種植的戶數(shù).2018年初開(kāi)始,若該村抽出戶(,)從事水果包裝、銷售.經(jīng)測(cè)算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為萬(wàn)元.(參考數(shù)據(jù):,,.

1)至2018年底,該村每戶年均純收入能否達(dá)到1.32萬(wàn)元?若能,請(qǐng)求出從事包裝、銷售的戶數(shù);若不能,請(qǐng)說(shuō)明理由;

2)至2020年底,為使從事水果種植農(nóng)戶能實(shí)現(xiàn)脫貧(即每戶(水果種植農(nóng)戶)年均純收入不低于1.6萬(wàn)元),至少要抽出多少戶從事包裝、銷售工作?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù). 設(shè)的導(dǎo)函數(shù).

(Ⅰ)若時(shí),函數(shù)處的切線經(jīng)過(guò)點(diǎn),求的值;

(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;

(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形中,,為邊的中點(diǎn),將 沿直線翻折成.為線段的中點(diǎn),則在翻折過(guò)程中,有下列三個(gè)命題:

①線段的長(zhǎng)是定值;

②存在某個(gè)位置,使

③存在某個(gè)位置,使平面.

其中正確的命題有______. (填寫所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且直線與橢圓有且只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線軸交于點(diǎn),過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斐波那契數(shù)列0,11,23,5,8,13,…,是意大利數(shù)學(xué)家列昂納多·斐波那契發(fā)明的,定義如下:,,.某同學(xué)設(shè)計(jì)了一個(gè)求解斐波那契數(shù)列前項(xiàng)和的程序框圖,如圖所示,若輸出的值為232,則處理框和判斷框中應(yīng)該分別填入(

A.,B.,

C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017318日,國(guó)務(wù)院辦公廳發(fā)布了《生活垃圾分類制度實(shí)施方案》,我市環(huán)保部門組織了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民都可以通過(guò)電腦網(wǎng)絡(luò)或手機(jī)微信平臺(tái)參與,但僅有一次參加機(jī)會(huì)工作人員通過(guò)隨機(jī)抽樣,得到參與網(wǎng)絡(luò)問(wèn)卷調(diào)查的100人的得分(滿分按100分計(jì))數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表.

組別

2

4

4

15

21

9

1

4

10

10

12

8

1)環(huán)保部門規(guī)定:?jiǎn)柧淼梅植坏陀?/span>70分的市民被稱為環(huán)保關(guān)注者.請(qǐng)列出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為是否為環(huán)保關(guān)注者與性別有關(guān)?

2)若問(wèn)卷得分不低于80分的人稱為環(huán)保達(dá)人.現(xiàn)在從本次調(diào)查的環(huán)保達(dá)人中利用分層抽樣的方法隨機(jī)抽取5名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@5名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男環(huán)保達(dá)人又有女環(huán)保達(dá)人的概率.

附表及公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案