函數(shù)f(x)=1+log2x與g(x)=21-x在同一直角坐標系下的圖象大致是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)=1+log2x與g(x)=2-x+1解析式,分析他們與同底的指數(shù)函數(shù)、對數(shù)函數(shù)的圖象之間的關(guān)系,(即如何變換得到),分析其經(jīng)過的特殊點,即可用排除法得到答案.
解答: 解:∵f(x)=1+log2x的圖象是由y=log2x的圖象上移1而得,
∴其圖象必過點(1,1).
故排除A、B,
又∵g(x)=21-x=2-(x-1)的圖象是由y=2-x的圖象右移1而得
故其圖象也必過(1,1)點,及(0,2)點,
故排除D
故選C
點評:本題主要考查對數(shù)函數(shù)和指數(shù)函數(shù)圖象的平移問題,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某雷達測速區(qū),測得時速(單位:km/h)的頻率分布直方圖如圖,根據(jù)頻率分布直方圖估計速度的平均值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosx(sinx+cosx)的最小正周期為( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
log2x,(x>0)
2 x,(x<0)
,則f(f(-2))=( 。
A、-2
B、
1
4
C、-4
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是(  )
A、y=-
1
x
B、y=log2|x|
C、y=-3|x|
D、y=x3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一段“三段論”推理是這樣的:對數(shù)函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù),因為函數(shù)f(x)=log
1
3
x
是對數(shù)函數(shù),所以函數(shù)f(x)=log
1
3
x
在(0,+∞)上是增函數(shù),以上推理中( 。
A、大前提錯誤
B、小前提錯誤
C、推理形式錯誤
D、結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法,其中正確說法的個數(shù)為( 。
(1)“m是實數(shù)”是“m是有理數(shù)”的充分不必要條件;
(2)“a>b”是“a2>b2”的充要條件;
(3)“x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“A∩B=B”是“B=ϕ”的必要不充分條件.
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2的單調(diào)減區(qū)間是( 。
A、[0,+∞)
B、(-∞,0]
C、(-∞,0)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足lgx+lgy=2,則x+4y的最小值是( 。
A、100B、40C、4D、2

查看答案和解析>>

同步練習(xí)冊答案