【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若時(shí),求
與
的交點(diǎn)坐標(biāo);
(2)若上的點(diǎn)到
距離的最大值為
,求
.
【答案】(1),
;(2)
或
.
【解析】試題分析:(1)根據(jù)參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化,求得曲線的直角坐標(biāo)方程,聯(lián)立方程組,即可求解交點(diǎn)的坐標(biāo);
(2)由曲線的參數(shù)方程,設(shè)
上的點(diǎn)
,求得點(diǎn)到
的距離,根據(jù)三角函數(shù)的圖象與性質(zhì),得出
的最大值,從而
的值.
試題解析:
(1)曲線的普通方程為,
當(dāng)時(shí),直線
的普通方程為
,
由,解得
,或
,
從而與
的交點(diǎn)坐標(biāo)為
,
.
(2)直線的普通方程為
,
設(shè)的參數(shù)方程為
(
為參數(shù)),
則上的點(diǎn)
到
的距離為
.
當(dāng)時(shí),
的最大值為
,
由題設(shè)得,所以
,
當(dāng)時(shí),
的最大值為
,
由題設(shè)得,所以
,
綜上,或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,
,
,四邊形
為矩形,平面
平面
,
.
(I)求證:平面
;
(II)點(diǎn)在線段
上運(yùn)動(dòng),設(shè)平面
與平面
所成二面角的平面角為
,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,
是邊長(zhǎng)等于2的等邊三角形,四邊形
是菱形,
,
,
是棱
上的點(diǎn),
.
,
分別是
,
的中點(diǎn).
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面PAC⊥平面ABC,點(diǎn)E、F、O分別為線段PA、PB、AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),AB=BC=AC=4,PA=PC=2.求證:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,
,
均與底面
垂直,且
為直角梯形,
,
,
,
,
分別為線段
,
的中點(diǎn),
為線段
上任意一點(diǎn).
(1)證明:平面
.
(2)若,證明:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月23日“世界讀書(shū)日”來(lái)臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),按閱讀時(shí)間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加�!爸腥A詩(shī)詞比賽”。經(jīng)過(guò)比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來(lái)自不同組別的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大��;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、
為拋物線
上的兩點(diǎn),
與
的中點(diǎn)的縱坐標(biāo)為4,直線
的斜率為
.
(1)求拋物線的方程;
(2)已知點(diǎn),
、
為拋物線
(除原點(diǎn)外)上的不同兩點(diǎn),直線
、
的斜率分別為
,
,且滿足
,記拋物線
在
、
處的切線交于點(diǎn)
,若點(diǎn)
、
的中點(diǎn)的縱坐標(biāo)為8,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com