在復(fù)平面內(nèi),復(fù)數(shù)
2
1-i
-i3對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:用兩個復(fù)數(shù)代數(shù)形式的乘除法法則,化簡復(fù)數(shù)得到a+bi的形式,從而得到復(fù)數(shù)在復(fù)平面內(nèi)的對應(yīng)點(diǎn)的坐標(biāo),得到位置.
解答: 解:復(fù)數(shù)
2
1-i
-i3=
2(1+i)
(1-i)(1+i)
+i=1+2i,
復(fù)數(shù)的在復(fù)平面內(nèi)的對應(yīng)點(diǎn)(1,2).
在復(fù)平面內(nèi),復(fù)數(shù)
2
1-i
-i3對應(yīng)的點(diǎn)位于第一象限.
故選:A.
點(diǎn)評:本題考查兩個復(fù)數(shù)代數(shù)形式的乘除法,兩個復(fù)數(shù)相除,分子和分母同時乘以分母的共軛復(fù)數(shù),考查復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點(diǎn)之間的關(guān)系,是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O:x2+y2=4及點(diǎn)A(1,3),BC為⊙O的任意一條直徑,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2<4x},集合B={y|y=-x2,-1≤x≤2},則集合∁R(A∩B)=(  )
A、RB、{0}
C、∅D、{x|x≥4或x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的是( 。
A、?0∈R,e x0≤0
B、?x∈R,2x>x2
C、a-b>0是a3-b3>0的充分不必要條件
D、ab>1是a>1且b>1的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=2+i,
.
z
是z的共軛復(fù)數(shù),則
.
z
z
對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(c,0),直線x=
a2
c
與一條漸近線交于點(diǎn)A,△OAF的面積為
a2
2
(O為原點(diǎn)),則拋物線y2=
4a
b
x的準(zhǔn)線方程為( 。
A、x=-1B、x=-2
C、y=-1D、y=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
cos2x-sin2x,若y=f(x-m)(m>0)是奇函數(shù),則m的最小值為(  )
A、
π
6
B、
6
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|log2x<2},B={x|
1
3
<3x
3
},則A∩B為( 。
A、(0,
1
2
B、(0,
2
C、(-1,
1
2
D、(-1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-cosx(0<x<
π
2
).?dāng)?shù)列{an}滿足:0<a1
π
2
,an+1=f(an),n∈N*
(Ⅰ)求證:0<an
π
2
(n∈N*);
(Ⅱ)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案