若函數(shù)f(x)=x2+ax+a2的最小值為3,則常數(shù)a=
 
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的最小值得出
3a2
4
=3,求解即可.
解答: 解:∵函數(shù)f(x)=x2+ax+a2的最小值為3,
3a2
4
=3,
得出a═±2,
故答案為:±2.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),最小值,求解方程,屬于容易題,難度很小.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定積分
2
-
2
4-x2
dx的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知在四棱錐P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且AD=DC=PA=
1
2
AB=a.
(Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)試在線段PB上找一點(diǎn)M,使CM∥平面PAD,并說明理由;
(Ⅲ)若點(diǎn)M是由(Ⅱ)中確定的,且PA⊥AB,求四面體MPAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
=-10,|
a
|=5,|
b
|=4,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C對(duì)邊分別為a,b,c,已知b2=ac,且a2-c2=ac-bc.
(1)求∠A的大小;
(2)求
bsinB
c
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種波的傳播是由曲線f(x)=Asin(ωx+φ)(A>0)來實(shí)現(xiàn)的,我們把函數(shù)解析式f(x)=Asin(ωx+φ)稱為“波”,把振幅都是A 的波稱為“A 類波”,把兩個(gè)解析式相加稱為波的疊加.
(1)已知“1 類波”中的兩個(gè)波f1(x)=sin(x+φ1)與f2(x)=sin(x+φ2)疊加后仍是“1類波”,求φ21的值;
(2)在“A 類波“中有一個(gè)是f1(x)=Asinx,從 A類波中再找出兩個(gè)不同的波f2(x),f3(x),使得這三個(gè)不同的波疊加之后是平波,即疊加后f1(x)+f2(x)+f3(x),并說明理由.
(3)在n(n∈N,n≥2)個(gè)“A類波”的情況下對(duì)(2)進(jìn)行推廣,使得(2)是推廣后命題的一個(gè)特例.只需寫出推廣的結(jié)論,而不需證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若△ABC的面積S=2
3
,b=4,A=
π
3
,求BC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|z1|=|z2|=1,z1+z2=
1
2
+
3
2
i,求復(fù)數(shù)z1、z2及|z1-z2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l平行于直線3x+4y-7=0,并且與兩坐標(biāo)軸圍成的三角形的面積為24,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案