【題目】歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是
A.B.C.D.
科目:高中數學 來源: 題型:
【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線與圓C的位置關系,并證明你的結論;
(3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線,的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在上任意一點處的切線為,若過右焦點的直線交橢圓于兩點,已知在點處切線相交于.
(Ⅰ)求點的軌跡方程;
(Ⅱ)①若過點且與直線垂直的直線(斜率存在且不為零)交橢圓于兩點,證明為定值.
②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)質量檢驗員為了檢測生產線上零件的情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);
(2)已知尺寸在上的零件為一等品,否則為二等品. 將這個零件尺寸的樣本頻率視為概率,從生產線上隨機抽取個零件,試估計所抽取的零件是二等品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓E:+=1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線交橢圓E于A,B兩點.若橢圓E的離心率為,三角形ABF2的周長為4.
(1)求橢圓E的方程;
(2)設不經過橢圓的中心而平行于弦AB的直線交橢圓E于點C,D,設弦AB,CD的中點分別為M,N,證明:O,M,N三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調性;
(2)是否存在實數a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網上在線學習,為研究學生網上學習的情況,某校社團對男女各10名學生進行了網上在線學習的問卷調查,每名學生給出評分(滿分100分),得到如圖所示的莖葉圖.
(1)根據莖葉圖判斷男生組和女生組哪個組對網課的評價更高?并說明理由;
(2)如圖是按該20名學生的評分繪制的頻率分布直方圖,求的值并估計這20名學生評分的平均值(同一組中的數據用該組區(qū)間中點值作為代表);
(3)求該20名學生評分的中位數,并將評分超過和不超過的學生數填入下面的列聯表:
超過 | 不超過 | |
男生 | ||
女生 |
根據列聯表,能否有的把握認為男生和女生的評分有差異?
附:,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | ||
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com