(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.
(1)∵AD // BC,BC=AD,Q為AD的中點,∴四邊形BCDQ為平行四邊形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QB⊥AD.又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD.∵BQ平面PQB,∴平面PQB⊥平面PAD.
(2).
解析試題分析:(1)∵AD // BC,BC=AD,Q為AD的中點,∴四邊形BCDQ為平行四邊形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QB⊥AD.
又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ平面PQB,∴平面PQB⊥平面PAD.
(2)∵PA=PD,Q為AD的中點, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點建立空間直角坐標(biāo)系.
則平面BQC的法向量為;,,
,.
設(shè),則,,
∵,
∴ , ∴
在平面MBQ中,,,
∴ 平面MBQ法向量為.
∵二面角M-BQ-C為30,
∴ .
考點:本題考查了空間中的線面關(guān)系
點評:高考中?疾榭臻g中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計算,這是高考的重點內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運用相關(guān)的判定定理與性質(zhì)定理.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點。
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點N,使AN與MC1成角60°?若存在,確定點N的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點。
(I)證明:平面;
(II)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com